Congruences for certain binomial sums
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 65-71
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi {\rm i})^{-1} \oint (1-2tz+t^2)^{-1/2}t^{-n-1} {\rm d} t,$ where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant 5$ and $n=rp^2-1$, we have $\sum _{k=0}^{\lfloor n/2\rfloor }{2k \choose k}\equiv 0, 1\text { or }-1 \pmod {p^2}$, depending on the value of $r \pmod 6$.
We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi {\rm i})^{-1} \oint (1-2tz+t^2)^{-1/2}t^{-n-1} {\rm d} t,$ where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant 5$ and $n=rp^2-1$, we have $\sum _{k=0}^{\lfloor n/2\rfloor }{2k \choose k}\equiv 0, 1\text { or }-1 \pmod {p^2}$, depending on the value of $r \pmod 6$.
DOI :
10.1007/s10587-013-0004-6
Classification :
05A10, 05A19, 11A07, 11B65
Keywords: central binomial coefficient; Legendre polynomial
Keywords: central binomial coefficient; Legendre polynomial
@article{10_1007_s10587_013_0004_6,
author = {Lee, Jung-Jo},
title = {Congruences for certain binomial sums},
journal = {Czechoslovak Mathematical Journal},
pages = {65--71},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0004-6},
mrnumber = {3035497},
zbl = {1274.11052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0004-6/}
}
Lee, Jung-Jo. Congruences for certain binomial sums. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 65-71. doi: 10.1007/s10587-013-0004-6
Cité par Sources :