Congruences for certain binomial sums
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 65-71
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi {\rm i})^{-1} \oint (1-2tz+t^2)^{-1/2}t^{-n-1} {\rm d} t,$ where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant 5$ and $n=rp^2-1$, we have $\sum _{k=0}^{\lfloor n/2\rfloor }{2k \choose k}\equiv 0, 1\text { or }-1 \pmod {p^2}$, depending on the value of $r \pmod 6$.
We exploit the properties of Legendre polynomials defined by the contour integral $\bold P_n(z)=(2\pi {\rm i})^{-1} \oint (1-2tz+t^2)^{-1/2}t^{-n-1} {\rm d} t,$ where the contour encloses the origin and is traversed in the counterclockwise direction, to obtain congruences of certain sums of central binomial coefficients. More explicitly, by comparing various expressions of the values of Legendre polynomials, it can be proved that for any positive integer $r$, a prime $p \geqslant 5$ and $n=rp^2-1$, we have $\sum _{k=0}^{\lfloor n/2\rfloor }{2k \choose k}\equiv 0, 1\text { or }-1 \pmod {p^2}$, depending on the value of $r \pmod 6$.
DOI : 10.1007/s10587-013-0004-6
Classification : 05A10, 05A19, 11A07, 11B65
Keywords: central binomial coefficient; Legendre polynomial
@article{10_1007_s10587_013_0004_6,
     author = {Lee, Jung-Jo},
     title = {Congruences for certain binomial sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {65--71},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0004-6},
     mrnumber = {3035497},
     zbl = {1274.11052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0004-6/}
}
TY  - JOUR
AU  - Lee, Jung-Jo
TI  - Congruences for certain binomial sums
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 65
EP  - 71
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0004-6/
DO  - 10.1007/s10587-013-0004-6
LA  - en
ID  - 10_1007_s10587_013_0004_6
ER  - 
%0 Journal Article
%A Lee, Jung-Jo
%T Congruences for certain binomial sums
%J Czechoslovak Mathematical Journal
%D 2013
%P 65-71
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0004-6/
%R 10.1007/s10587-013-0004-6
%G en
%F 10_1007_s10587_013_0004_6
Lee, Jung-Jo. Congruences for certain binomial sums. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 65-71. doi: 10.1007/s10587-013-0004-6

[1] Callan, D.: On generating functions involving the square root of a quadratic polynomial. J. Integer Seq. 10 (2007), Article 07.5.2. | MR | Zbl

[2] Callan, D., Chapman, R.: Divisibility of a central binomial sum (Problems and Solutions 11292&11307 [2007, 451&640]). American Mathematical Monthly 116 (2009), 468-470. | MR

[3] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger 7th ed. Elsevier/Academic Press, Amsterdam (2007). | MR

[4] Mattarei, S.: Asymptotics of partial sums of central binomial coefficients and Catalan numbers. arXiv:0906.4290v3.

Cité par Sources :