Keywords: Liouville's function; determinant; LU decomposition
@article{10_1007_s10587_013_0002_8,
author = {Oon, Shea-Ming},
title = {Integer matrices related to {Liouville's} function},
journal = {Czechoslovak Mathematical Journal},
pages = {39--46},
year = {2013},
volume = {63},
number = {1},
doi = {10.1007/s10587-013-0002-8},
mrnumber = {3035495},
zbl = {1274.11012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0002-8/}
}
TY - JOUR AU - Oon, Shea-Ming TI - Integer matrices related to Liouville's function JO - Czechoslovak Mathematical Journal PY - 2013 SP - 39 EP - 46 VL - 63 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0002-8/ DO - 10.1007/s10587-013-0002-8 LA - en ID - 10_1007_s10587_013_0002_8 ER -
Oon, Shea-Ming. Integer matrices related to Liouville's function. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 39-46. doi: 10.1007/s10587-013-0002-8
[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics New York-Heidelberg-Berlin: Springer (1976). | MR | Zbl
[2] Bordellès, O., Cloître, B.: A matrix inequality for Möbius functions. JIPAM, J. Inequal. Pure Appl. Math. 10 (2009), Paper No. 62, pp. 9, electronic only. | MR | Zbl
[3] Higham, N. J.: A survey of condition number estimation for triangular matrices. SIAM Rev. 29 575-596 (1987). | DOI | MR | Zbl
[4] Hong, Y. P., Pan, C.-T.: A lower bound for the smallest singular value. Linear Algebra Appl. 172 27-32 (1992). | MR | Zbl
[5] Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Erster Band. Leipzig u. Berlin: B. G. Teubner. X (1909).
[6] Redheffer, R.: Eine explizit lösbare Optimierungsaufgabe. Numer. Meth. Optim.-Aufg. 36 213-216 (1977). | MR | Zbl
[7] Tenenbaum, G.: Introduction à la Théorie Analytique et Probabiliste des Nombres. Cours Spécialisés 1 Paris: Société Mathématique de France (1995). | MR | Zbl
Cité par Sources :