Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 1-38
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
DOI : 10.1007/s10587-013-0001-9
Classification : 26A39, 42A32, 42B05
Keywords: Henstock-Kurzweil integral; regularly convergent multiple series
@article{10_1007_s10587_013_0001_9,
     author = {Lee, Tuo-Yeong},
     title = {Two convergence theorems for {Henstock-Kurzweil} integrals and their applications to multiple trigonometric series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--38},
     year = {2013},
     volume = {63},
     number = {1},
     doi = {10.1007/s10587-013-0001-9},
     mrnumber = {3035494},
     zbl = {1274.42016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0001-9/}
}
TY  - JOUR
AU  - Lee, Tuo-Yeong
TI  - Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
JO  - Czechoslovak Mathematical Journal
PY  - 2013
SP  - 1
EP  - 38
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0001-9/
DO  - 10.1007/s10587-013-0001-9
LA  - en
ID  - 10_1007_s10587_013_0001_9
ER  - 
%0 Journal Article
%A Lee, Tuo-Yeong
%T Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series
%J Czechoslovak Mathematical Journal
%D 2013
%P 1-38
%V 63
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-013-0001-9/
%R 10.1007/s10587-013-0001-9
%G en
%F 10_1007_s10587_013_0001_9
Lee, Tuo-Yeong. Two convergence theorems for Henstock-Kurzweil integrals and their applications to multiple trigonometric series. Czechoslovak Mathematical Journal, Tome 63 (2013) no. 1, pp. 1-38. doi: 10.1007/s10587-013-0001-9

[1] Aubertin, B., Fournier, J. J. F.: Integrability of Multiple Series. Fourier Analysis: Analytic and Geometric Aspects. Proc. 6th Int. Workshop on Analysis and Its Applications, Univ. of Maine, 1992. Lecture Notes in Pure and Appl. Math., Vol. 157 W. O. Bray et al. Marcel Dekker New York (1994), 47-75. | MR | Zbl

[2] Boas, R. P.: Integrability of trigonometric series I. Duke Math. J. 18 (1951), 787-793. | DOI | MR | Zbl

[3] Boas, R. P.: Integrability Theorems for Trigonometric Transforms. Springer Berlin-New York (1967). | MR | Zbl

[4] Bongiorno, B.: The Henstock-Kurzweil integral. Handbook of Measure Theory, Vol. I, II. North-Holland Amsterdam (2002), 587-615. | MR

[5] Chew, T.-S., Van-Brunt, B., Wake, G. C.: First-order partial differential equations and Henstock-Kurzweil integrals. Differ. Integral Equ. 10 (1997), 947-960. | MR | Zbl

[6] Faure, C.-A.: A descriptive definition of some multidimensional gauge integrals. Czech. Math. J. 45 (1995), 549-562. | MR | Zbl

[7] Faure, C.-A., Mawhin, J.: Integration over unbounded multidimensional intervals. J. Math. Anal. Appl. 205 (1997), 65-77. | DOI | MR | Zbl

[8] Hardy, G. H., Littlewood, J. E.: Solution of the Cesàro summability problem for power-series and Fourier series. Math. Zs. 19 (1923), 67-96. | DOI

[9] Henstock, R.: Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc., III. Ser. 11 (1961), 402-418. | DOI | MR | Zbl

[10] Henstock, R., Muldowney, P., Skvortsov, V. A.: Partitioning infinite-dimensional spaces for generalized Riemann integration. Bull. Lond. Math. Soc. 38 (2006), 795-803. | DOI | MR | Zbl

[11] Heywood, P.: Integrability theorems for trigonometric series. Q. J. Math., Oxford, II. Ser. 13 (1962), 172-180. | DOI | MR | Zbl

[12] Karták, K.: K theorii vícerozměrného integrálu. Čas. Mat. 80 (1955), 400-414 Czech.

[13] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (1957), 418-449. | MR | Zbl

[14] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach After Kurzweil and Henstock. Australian Mathematical Society Lecture Series 14. Cambridge University Press Cambridge (2000). | MR

[15] Lee, T.-Y.: A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space. Proc. Lond. Math. Soc., III. Ser 87 (2003), 677-700. | DOI | MR | Zbl

[16] Lee, T.-Y.: Product variational measures and Fubini-Tonelli type theorems for the Henstock-Kurzweil integral. J. Math. Anal. Appl. 298 (2004), 677-692. | DOI | MR | Zbl

[17] Lee, T.-Y.: A characterisation of multipliers for the Henstock-Kurzweil integral. Math. Proc. Camb. Philos. Soc. 138 (2005), 487-492. | DOI | MR | Zbl

[18] Lee, T.-Y.: Proof of two conjectures of Móricz on double trigonometric series. J. Math. Anal. Appl. 340 (2008), 53-63. | DOI | MR

[19] Lee, T.-Y.: Some convergence theorems for Lebesgue integrals. Analysis, München 28 (2008), 263-268. | MR

[20] Lee, T.-Y.: A measure-theoretic characterization of the Henstock-Kurzweil integral revisited. Czech. Math. J. 58 (2008), 1221-1231. | DOI | MR

[21] Lee, T.-Y.: A multidimensional integration by parts formula for the Henstock-Kurzweil integral. Math. Bohem. 133 (2008), 63-74. | MR

[22] Lee, T.-Y.: Bounded linear functionals on the space of Henstock-Kurzweil integrable functions. Czech. Math. J. 59 (2009), 1005-1017. | DOI | MR

[23] Lee, T.-Y.: On a result of Hardy and Littlewood concerning Fourier series. Anal. Math. 36 (2010), 219-223. | DOI | MR

[24] Lee, T.-Y.: Some integrability theorems for multiple trigonometric series. Math. Bohem. 136 (2011), 269-286. | MR

[25] Mikusiński, P., Ostaszewski, K.: The space of Henstock integrable functions II. New Integrals. Lect. Notes Math. Vol. 1419 P. S. Bullen, P. Y. Lee, J. L. Mawhin, P. Muldowney, W. F. Pfeffer Springer Berlin-Heideberg-New York (1990), 136-149. | DOI | MR

[26] Móricz, F.: Some remarks on the notion of regular convergence of multiple series. Acta Math. Hung. 41 (1983), 161-168. | DOI | MR

[27] Móricz, F.: Integrability of double lacunary sine series. Proc. Am. Math. Soc. 110 (1990), 355-364. | DOI | MR

[28] Móricz, F.: On the integrability of double cosine and sine series I. J. Math. Anal. Appl. 154 (1991), 452-465. | DOI | MR

[29] Móricz, F.: On the integrability of double cosine and sine series II. J. Math. Anal. Appl. 154 (1991), 466-483. | DOI | MR

[30] Móricz, F.: Integrability of double cosine-sine series in the sense of improper Riemann integral. J. Math. Anal. Appl. 165 (1992), 419-437. | DOI | MR

[31] Ostaszewski, K.: Henstock Integration in the Plane. Mem. Am. Math. Soc. Vol. 63 (1986). | MR

[32] Saks, S.: Theory of the Integral. Second revised edition. G. E. Stechert & Co. New York (1937).

[33] Talvila, E.: Henstock-Kurzweil Fourier transforms. Ill. J. Math. 46 (2002), 1207-1226. | DOI | MR | Zbl

[34] Talvila, E.: Estimates of Henstock-Kurzweil Poisson integrals. Can. Math. Bull. 48 (2005), 133-146. | DOI | MR

[35] Talvila, E.: Estimates of the remainder in Taylor's theorem using the Henstock-Kurzweil integral. Czech. Math. J. 55 (2005), 933-940. | DOI | MR

[36] Young, W. H.: On multiple Fourier series. Lond. M. S. Proc. 11 (1912), 133-184. | MR

[37] Zygmund, A.: Trigonometric Series. Volumes I, II and combined. Third edition. Cambridge University Press Cambridge (2002). | MR

Cité par Sources :