Keywords: bifractional Brownian motion; collision local time; intersection local time; chaos expansion
@article{10_1007_s10587_012_0077_7,
author = {Shen, Guangjun and Yan, Litan and Chen, Chao},
title = {Smoothness for the collision local time of two multidimensional bifractional {Brownian} motions},
journal = {Czechoslovak Mathematical Journal},
pages = {969--989},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0077-7},
mrnumber = {3010251},
zbl = {1274.60119},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0077-7/}
}
TY - JOUR AU - Shen, Guangjun AU - Yan, Litan AU - Chen, Chao TI - Smoothness for the collision local time of two multidimensional bifractional Brownian motions JO - Czechoslovak Mathematical Journal PY - 2012 SP - 969 EP - 989 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0077-7/ DO - 10.1007/s10587-012-0077-7 LA - en ID - 10_1007_s10587_012_0077_7 ER -
%0 Journal Article %A Shen, Guangjun %A Yan, Litan %A Chen, Chao %T Smoothness for the collision local time of two multidimensional bifractional Brownian motions %J Czechoslovak Mathematical Journal %D 2012 %P 969-989 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0077-7/ %R 10.1007/s10587-012-0077-7 %G en %F 10_1007_s10587_012_0077_7
Shen, Guangjun; Yan, Litan; Chen, Chao. Smoothness for the collision local time of two multidimensional bifractional Brownian motions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 969-989. doi: 10.1007/s10587-012-0077-7
[1] An, L., Yan, L.: Smoothness for the collision local time of fractional Brownian motion. Preprint, 2010.
[2] Chen, C., Yan, L.: Remarks on the intersection local time of fractional Brownian motions. Stat. Probab. Lett. 81 (2011), 1003-1012. | DOI | MR | Zbl
[3] Es-Sebaiy, K., Tudor, C. A.: Multidimensional bifractional Brownian motion: Itô and Tanaka formulas. Stoch. Dyn. 7 (2007), 365-388. | DOI | MR | Zbl
[4] Houdré, Ch., Villa, J.: An example of infinite dimensional quasi-helix. Stochastic models. Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195-201. | DOI | MR | Zbl
[5] Hu, Y.: Self-intersection local time of fractional Brownian motion - via chaos expansion. J. Math, Kyoto Univ. 41 (2001), 233-250. | DOI | MR
[6] Hu, Y.: Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Am. Math. Soc. 825 (2005). | MR | Zbl
[7] Jiang, Y., Wang, Y.: Self-intersection local times and collision local times of bifractional Brownian motions. Sci. China, Ser. A 52 (2009), 1905-1919. | DOI | MR | Zbl
[8] Kruk, I., Russo, F., Tudor, C. A.: Wiener integrals, Malliavin calculus and covariance measure structure. J. Funct. Anal. 249 (2007), 92-142. | DOI | MR | Zbl
[9] Lei, P., Nualart, D.: A decomposition of the bifractional Brownian motion and some applications. Stat. Probab. Lett. 79 (2009), 619-624. | DOI | MR | Zbl
[10] Mishura, Y.: Stochastic Calculus for Fractional Brownian Motions and Related Processes. Lecture Notes in Mathematics 1929. Springer, Berlin (2008). | MR
[11] Nualart, D., Ortiz-Latorre, S.: Intersection local time for two independent fractional Brownian motions. J. Theor. Probab. 20 (2007), 759-767. | DOI | MR | Zbl
[12] Nualart, D.: The Malliavin Calculus and Related Topics. 2nd ed. Probability and Its Applications. Springer, Berlin (2006). | MR | Zbl
[13] Russo, F., Tudor, C. A.: On bifractional Brownian motion. Stochastic Processes Appl. 116 (2006), 830-856. | DOI | MR | Zbl
[14] Shen, G., Yan, L.: Smoothness for the collision local times of bifractional Brownian motions. Sci. China, Math. 54 (2011), 1859-1873. | DOI | MR | Zbl
[15] Tudor, C. A., Xiao, Y.: Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007), 1023-1052. | DOI | MR | Zbl
[16] Watanabe, S.: Lectures on Stochastic Differential Equations and Malliavin Calculus. Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin (1984). | MR | Zbl
[17] Yan, L., Liu, J., Chen, C.: On the collision local time of bifractional Brownian motions. Stoch. Dyn. 9 (2009), 479-491. | DOI | MR | Zbl
[18] Yan, L., Gao, B., Liu, J.: The Bouleau-Yor identity for a bi-fractional Brownian motion. (to appear) in Stochastics 2012.
Cité par Sources :