Keywords: $p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem
@article{10_1007_s10587_012_0076_8,
author = {Galewski, Marek and O'Regan, Donal},
title = {Impulsive boundary value problems for $p(t)${-Laplacian's} via critical point theory},
journal = {Czechoslovak Mathematical Journal},
pages = {951--967},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0076-8},
mrnumber = {3010250},
zbl = {1274.34083},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/}
}
TY - JOUR AU - Galewski, Marek AU - O'Regan, Donal TI - Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory JO - Czechoslovak Mathematical Journal PY - 2012 SP - 951 EP - 967 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/ DO - 10.1007/s10587-012-0076-8 LA - en ID - 10_1007_s10587_012_0076_8 ER -
%0 Journal Article %A Galewski, Marek %A O'Regan, Donal %T Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory %J Czechoslovak Mathematical Journal %D 2012 %P 951-967 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/ %R 10.1007/s10587-012-0076-8 %G en %F 10_1007_s10587_012_0076_8
Galewski, Marek; O'Regan, Donal. Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 951-967. doi: 10.1007/s10587-012-0076-8
[1] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006). | MR | Zbl
[2] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | Zbl
[3] Fan, X. L., Zhang, Q. H.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. | DOI | MR | Zbl
[4] Fan, X. L., Zhao, D.: On the spaces $L^{p( x) }( \Omega ) $ and $W^{m,p( x) }( \Omega ) $. J. Math. Anal. Appl. 263 (2001), 424-446. | DOI | MR
[5] Feng, M., Xie, D.: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math. 223 (2009), 438-448. | DOI | MR | Zbl
[6] Ge, W., Tian, Y.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. | DOI | MR | Zbl
[7] Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. | DOI | MR | Zbl
[8] Jankowski, T.: Positive solutions to second order four-point boundary value problems for impulsive differential equations. Appl. Math. Comput. 202 (2008), 550-561. | DOI | MR
[9] Mawhin, J.: Problemes de Dirichlet Variationnels non Linéaires. French Les Presses de l'Université de Montréal, Montreal (1987). | MR | Zbl
[10] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 680-690. | MR | Zbl
[11] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. | DOI | MR | Zbl
[12] Teng, K., Zhang, Ch.: Existence of solution to boundary value problem for impulsive differential equations. Nonlinear Anal., Real World Appl. 11 (2010), 4431-4441. | MR | Zbl
[13] Troutman, J. L.: Variational Calculus with Elementary Convexity. With the assistence of W. Hrusa. Undergraduate Texts in Mathematics. Springer, New York (1983). | MR | Zbl
[14] Zhang, H., Li, Z.: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal., Real World Appl. 11 (2010), 67-78. | MR | Zbl
[15] Zhang, Z., Yuan, R.: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal., Real World Appl. 11 (2010), 155-162. | MR | Zbl
[16] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 675-710 (1986). | DOI | MR | Zbl
Cité par Sources :