Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 951-967 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.
In this paper we investigate the existence of solutions to impulsive problems with a $p(t)$-Laplacian and Dirichlet boundary value conditions. We introduce two types of solutions, namely a weak and a classical one which coincide because of the fundamental lemma of the calculus of variations. Firstly we investigate the existence of solution to the linear problem, i.e. a problem with a fixed rigth hand side. Then we use a direct variational method and next a mountain pass approach in order to get the existence of at least one weak solution to the nonlinear problem.
DOI : 10.1007/s10587-012-0076-8
Classification : 34B37, 47J30, 58E50
Keywords: $p( t)$-Laplacian; impulsive condition; critical point; variational method; Dirichlet problem
@article{10_1007_s10587_012_0076_8,
     author = {Galewski, Marek and O'Regan, Donal},
     title = {Impulsive boundary value problems for $p(t)${-Laplacian's} via critical point theory},
     journal = {Czechoslovak Mathematical Journal},
     pages = {951--967},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0076-8},
     mrnumber = {3010250},
     zbl = {1274.34083},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/}
}
TY  - JOUR
AU  - Galewski, Marek
AU  - O'Regan, Donal
TI  - Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 951
EP  - 967
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/
DO  - 10.1007/s10587-012-0076-8
LA  - en
ID  - 10_1007_s10587_012_0076_8
ER  - 
%0 Journal Article
%A Galewski, Marek
%A O'Regan, Donal
%T Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory
%J Czechoslovak Mathematical Journal
%D 2012
%P 951-967
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0076-8/
%R 10.1007/s10587-012-0076-8
%G en
%F 10_1007_s10587_012_0076_8
Galewski, Marek; O'Regan, Donal. Impulsive boundary value problems for $p(t)$-Laplacian's via critical point theory. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 951-967. doi: 10.1007/s10587-012-0076-8

[1] Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Contemporary Mathematics and Its Applications, 2. Hindawi Publishing Corporation, New York (2006). | MR | Zbl

[2] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66 (2006), 1383-1406. | DOI | MR | Zbl

[3] Fan, X. L., Zhang, Q. H.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. | DOI | MR | Zbl

[4] Fan, X. L., Zhao, D.: On the spaces $L^{p( x) }( \Omega ) $ and $W^{m,p( x) }( \Omega ) $. J. Math. Anal. Appl. 263 (2001), 424-446. | DOI | MR

[5] Feng, M., Xie, D.: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J. Comput. Appl. Math. 223 (2009), 438-448. | DOI | MR | Zbl

[6] Ge, W., Tian, Y.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. | DOI | MR | Zbl

[7] Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 4551-4574. | DOI | MR | Zbl

[8] Jankowski, T.: Positive solutions to second order four-point boundary value problems for impulsive differential equations. Appl. Math. Comput. 202 (2008), 550-561. | DOI | MR

[9] Mawhin, J.: Problemes de Dirichlet Variationnels non Linéaires. French Les Presses de l'Université de Montréal, Montreal (1987). | MR | Zbl

[10] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 680-690. | MR | Zbl

[11] Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000. | DOI | MR | Zbl

[12] Teng, K., Zhang, Ch.: Existence of solution to boundary value problem for impulsive differential equations. Nonlinear Anal., Real World Appl. 11 (2010), 4431-4441. | MR | Zbl

[13] Troutman, J. L.: Variational Calculus with Elementary Convexity. With the assistence of W. Hrusa. Undergraduate Texts in Mathematics. Springer, New York (1983). | MR | Zbl

[14] Zhang, H., Li, Z.: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal., Real World Appl. 11 (2010), 67-78. | MR | Zbl

[15] Zhang, Z., Yuan, R.: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal., Real World Appl. 11 (2010), 155-162. | MR | Zbl

[16] Zhikov, V. V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33-66; translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 675-710 (1986). | DOI | MR | Zbl

Cité par Sources :