Keywords: natural lift; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure
@article{10_1007_s10587_012_0075_9,
author = {Dru\c{t}\u{a}-Romaniuc, Simona-Luiza},
title = {Natural diagonal {Riemannian} almost product and {para-Hermitian} cotangent bundles},
journal = {Czechoslovak Mathematical Journal},
pages = {937--949},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0075-9},
mrnumber = {3010249},
zbl = {1274.53040},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/}
}
TY - JOUR AU - Druţă-Romaniuc, Simona-Luiza TI - Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles JO - Czechoslovak Mathematical Journal PY - 2012 SP - 937 EP - 949 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/ DO - 10.1007/s10587-012-0075-9 LA - en ID - 10_1007_s10587_012_0075_9 ER -
%0 Journal Article %A Druţă-Romaniuc, Simona-Luiza %T Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles %J Czechoslovak Mathematical Journal %D 2012 %P 937-949 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/ %R 10.1007/s10587-012-0075-9 %G en %F 10_1007_s10587_012_0075_9
Druţă-Romaniuc, Simona-Luiza. Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 937-949. doi: 10.1007/s10587-012-0075-9
[1] Alekseevsky, D. V., Medori, C., Tomassini, A.: Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv. 64 (2009), 1-43. | DOI | MR | Zbl
[2] Anastasiei, M.: Some Riemannian almost product structures on tangent manifold. Proceedings of the 11th National Conference on Finsler, Lagrange and Hamilton Geometry (Craiova, 2000). Algebras Groups Geom. 17 (2000), 253-262. | MR
[3] Bejan, C.: A classification of the almost parahermitian manifolds. Differential Geometry and Its Application Proc. Conf. Dubrovnik/Yougosl. 1988 (1989), 23-27. | MR | Zbl
[4] Bejan, C.: Almost parahermitian structures on the tangent bundle of an almost para-co-Hermitian manifold. Finsler and Lagrange Spaces, Proc. 5th Natl. Semin., Braşov, 1988 Soc. Ştiinţe Math. R. S. România Bucharest (1989), 105-109.
[5] Bejan, C., Ornea, L.: An example of an almost hyperbolic Hermitian manifold. Int. J. Math. Math. Sci. 21 (1998), 613-618. | DOI | MR | Zbl
[6] Cruceanu, V.: Selected Papers. Editura PIM Iaşi (2006).
[7] Druţă, S. L.: Cotangent bundles with general natural Kähler structures. Rev. Roum. Math. Pures Appl. 54 (2009), 13-23. | MR | Zbl
[8] Gadea, P. M., Masqué, J. M.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. 11 (1991), 377-396. | MR
[9] Farran, H. K., Zanoun, M. S.: On hyperbolic Hermite manifolds. Publ. Inst. Math., Nouv. Sér. 46 (1989), 173-182. | MR | Zbl
[10] Heydari, A., Peyghan, E.: A characterization of the infinitesimal conformal transformations on tangent bundles. Bull. Iran. Math. Soc. 34 (2008), 59-70. | MR | Zbl
[11] Ivanov, S., Zamkovoy, S.: Para-Hermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23 (2005), 205-234. | DOI | MR | Zbl
[12] Kolář, I.: On cotangent bundles of some natural bundles. Geometry and physics. Proc. of the Winter School of Geometry and Physics (Zdíkov, 1993). Rend. Circ. Mat. Palermo Suppl. 37 (1994), 115-120. | MR
[13] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Berlin (1993). | MR
[14] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles---a classification. Bull. Tokyo Gakugei Univ., Sect. IV 40 (1988), 1-29. | MR | Zbl
[15] Luczyszyn, D., Olszak, Z.: On paraholomorphically pseudosymmetric para-Kählerian manifolds. J. Korean Math. Soc. 45 (2008), 953-963. | DOI | MR | Zbl
[16] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure. J. Geom. 89 (2008), 119-129. | DOI | MR | Zbl
[17] Mihai, I., Nicolau, C.: Almost product structures on the tangent bundle of an almost paracontact manifold. Demonstr. Math. 15 (1982), 1045-1058. | MR | Zbl
[18] Mok, K.-P., Patterson, E. M., Wong, Y.-C.: Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle. Trans. Am. Math. Soc. 234 (1977), 253-278. | MR | Zbl
[19] Munteanu, M.-I.: CR-structures on the unit cotangent bundle and Bochner type tensor. An. Ştiinţ. Univ. Al. I. Cuza Iaşi A, Ser. Nou\v a, Mat. 44 (1998), 125-136. | MR | Zbl
[20] Naveira, A. M.: A classification of Riemannian almost product manifolds. Rend. Math. Appl. VII. Ser. 3 (1983), 577-592. | MR | Zbl
[21] Oproiu, V., Papaghiuc, N.: A pseudo-Riemannian structure on the cotangent bundle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 36 (1990), 265-276. | MR | Zbl
[22] Oproiu, V., Papaghiuc, N., Mitric, G.: Some classes of parahermitian structures on cotangent bundles. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 43 (1996), 7-22. | MR | Zbl
[23] Oproiu, V., Poroşniuc, D. D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. 66 (2005), 457-478. | MR | Zbl
[24] Peyghan, E., Heydari, A.: A class of locally symmetric para-Kähler Einstein structures on the cotangent bundle. Int. Math. Forum 5 (2010), 145-153. | MR | Zbl
[25] Staikova, M. T., Gribachev, K. I.: Canonical connections and conformal invariants on Riemannian almost-product manifolds. Serdica 18 (1992), 150-161. | MR
[26] Yano, K.: Differential Geometry on a Complex and Almost Complex Spaces. Pergamon Press Oxford-London-New York-Paris-Frankfurt (1965).
[27] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc. New York (1973). | MR | Zbl
Cité par Sources :