Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 937-949 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian structures on the total space of the cotangent bundle.
We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost) para-Kählerian structures on the total space of the cotangent bundle.
DOI : 10.1007/s10587-012-0075-9
Classification : 53C05, 53C15, 53C55
Keywords: natural lift; cotangent bundle; almost product structure; para-Hermitian structure; para-Kähler structure
@article{10_1007_s10587_012_0075_9,
     author = {Dru\c{t}\u{a}-Romaniuc, Simona-Luiza},
     title = {Natural diagonal {Riemannian} almost product and {para-Hermitian} cotangent bundles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {937--949},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0075-9},
     mrnumber = {3010249},
     zbl = {1274.53040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/}
}
TY  - JOUR
AU  - Druţă-Romaniuc, Simona-Luiza
TI  - Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 937
EP  - 949
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/
DO  - 10.1007/s10587-012-0075-9
LA  - en
ID  - 10_1007_s10587_012_0075_9
ER  - 
%0 Journal Article
%A Druţă-Romaniuc, Simona-Luiza
%T Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles
%J Czechoslovak Mathematical Journal
%D 2012
%P 937-949
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0075-9/
%R 10.1007/s10587-012-0075-9
%G en
%F 10_1007_s10587_012_0075_9
Druţă-Romaniuc, Simona-Luiza. Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 937-949. doi: 10.1007/s10587-012-0075-9

[1] Alekseevsky, D. V., Medori, C., Tomassini, A.: Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv. 64 (2009), 1-43. | DOI | MR | Zbl

[2] Anastasiei, M.: Some Riemannian almost product structures on tangent manifold. Proceedings of the 11th National Conference on Finsler, Lagrange and Hamilton Geometry (Craiova, 2000). Algebras Groups Geom. 17 (2000), 253-262. | MR

[3] Bejan, C.: A classification of the almost parahermitian manifolds. Differential Geometry and Its Application Proc. Conf. Dubrovnik/Yougosl. 1988 (1989), 23-27. | MR | Zbl

[4] Bejan, C.: Almost parahermitian structures on the tangent bundle of an almost para-co-Hermitian manifold. Finsler and Lagrange Spaces, Proc. 5th Natl. Semin., Braşov, 1988 Soc. Ştiinţe Math. R. S. România Bucharest (1989), 105-109.

[5] Bejan, C., Ornea, L.: An example of an almost hyperbolic Hermitian manifold. Int. J. Math. Math. Sci. 21 (1998), 613-618. | DOI | MR | Zbl

[6] Cruceanu, V.: Selected Papers. Editura PIM Iaşi (2006).

[7] Druţă, S. L.: Cotangent bundles with general natural Kähler structures. Rev. Roum. Math. Pures Appl. 54 (2009), 13-23. | MR | Zbl

[8] Gadea, P. M., Masqué, J. M.: Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. 11 (1991), 377-396. | MR

[9] Farran, H. K., Zanoun, M. S.: On hyperbolic Hermite manifolds. Publ. Inst. Math., Nouv. Sér. 46 (1989), 173-182. | MR | Zbl

[10] Heydari, A., Peyghan, E.: A characterization of the infinitesimal conformal transformations on tangent bundles. Bull. Iran. Math. Soc. 34 (2008), 59-70. | MR | Zbl

[11] Ivanov, S., Zamkovoy, S.: Para-Hermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23 (2005), 205-234. | DOI | MR | Zbl

[12] Kolář, I.: On cotangent bundles of some natural bundles. Geometry and physics. Proc. of the Winter School of Geometry and Physics (Zdíkov, 1993). Rend. Circ. Mat. Palermo Suppl. 37 (1994), 115-120. | MR

[13] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer Berlin (1993). | MR

[14] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles---a classification. Bull. Tokyo Gakugei Univ., Sect. IV 40 (1988), 1-29. | MR | Zbl

[15] Luczyszyn, D., Olszak, Z.: On paraholomorphically pseudosymmetric para-Kählerian manifolds. J. Korean Math. Soc. 45 (2008), 953-963. | DOI | MR | Zbl

[16] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure. J. Geom. 89 (2008), 119-129. | DOI | MR | Zbl

[17] Mihai, I., Nicolau, C.: Almost product structures on the tangent bundle of an almost paracontact manifold. Demonstr. Math. 15 (1982), 1045-1058. | MR | Zbl

[18] Mok, K.-P., Patterson, E. M., Wong, Y.-C.: Structure of symmetric tensors of type (0,2) and tensors of type (1,1) on the tangent bundle. Trans. Am. Math. Soc. 234 (1977), 253-278. | MR | Zbl

[19] Munteanu, M.-I.: CR-structures on the unit cotangent bundle and Bochner type tensor. An. Ştiinţ. Univ. Al. I. Cuza Iaşi A, Ser. Nou\v a, Mat. 44 (1998), 125-136. | MR | Zbl

[20] Naveira, A. M.: A classification of Riemannian almost product manifolds. Rend. Math. Appl. VII. Ser. 3 (1983), 577-592. | MR | Zbl

[21] Oproiu, V., Papaghiuc, N.: A pseudo-Riemannian structure on the cotangent bundle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 36 (1990), 265-276. | MR | Zbl

[22] Oproiu, V., Papaghiuc, N., Mitric, G.: Some classes of parahermitian structures on cotangent bundles. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nou\v a Mat. 43 (1996), 7-22. | MR | Zbl

[23] Oproiu, V., Poroşniuc, D. D.: A class of Kähler Einstein structures on the cotangent bundle. Publ. Math. 66 (2005), 457-478. | MR | Zbl

[24] Peyghan, E., Heydari, A.: A class of locally symmetric para-Kähler Einstein structures on the cotangent bundle. Int. Math. Forum 5 (2010), 145-153. | MR | Zbl

[25] Staikova, M. T., Gribachev, K. I.: Canonical connections and conformal invariants on Riemannian almost-product manifolds. Serdica 18 (1992), 150-161. | MR

[26] Yano, K.: Differential Geometry on a Complex and Almost Complex Spaces. Pergamon Press Oxford-London-New York-Paris-Frankfurt (1965).

[27] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc. New York (1973). | MR | Zbl

Cité par Sources :