Julia lines of general random Dirichlet series
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 919-936
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _{n=1}^{\infty }X_n(\omega ) {\rm e} ^{-\lambda _n s}$ where $X_n$ are independent and complex valued variables, $0\leq \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.
In this paper, we consider a random entire function $f(s,\omega )$ defined by a random Dirichlet series $\sum \nolimits _{n=1}^{\infty }X_n(\omega ) {\rm e} ^{-\lambda _n s}$ where $X_n$ are independent and complex valued variables, $0\leq \lambda _n \nearrow +\infty $. We prove that under natural conditions, for some random entire functions of order $(R)$ zero $f(s,\omega )$ almost surely every horizontal line is a Julia line without an exceptional value. The result improve a theorem of J. R. Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of $X_n$ for such function $f(s,\omega )$ of order $(R)$ zero, almost surely.
DOI : 10.1007/s10587-012-0074-x
Classification : 30B20, 30B50, 30D05, 30D20, 30D35, 60G99
Keywords: random Dirichlet series; order $(R)$; Julia lines; entire function
@article{10_1007_s10587_012_0074_x,
     author = {Jin, Qiyu and Deng, Guantie and Sun, Daochun},
     title = {Julia lines of general random {Dirichlet} series},
     journal = {Czechoslovak Mathematical Journal},
     pages = {919--936},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0074-x},
     mrnumber = {3010248},
     zbl = {1274.30106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0074-x/}
}
TY  - JOUR
AU  - Jin, Qiyu
AU  - Deng, Guantie
AU  - Sun, Daochun
TI  - Julia lines of general random Dirichlet series
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 919
EP  - 936
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0074-x/
DO  - 10.1007/s10587-012-0074-x
LA  - en
ID  - 10_1007_s10587_012_0074_x
ER  - 
%0 Journal Article
%A Jin, Qiyu
%A Deng, Guantie
%A Sun, Daochun
%T Julia lines of general random Dirichlet series
%J Czechoslovak Mathematical Journal
%D 2012
%P 919-936
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0074-x/
%R 10.1007/s10587-012-0074-x
%G en
%F 10_1007_s10587_012_0074_x
Jin, Qiyu; Deng, Guantie; Sun, Daochun. Julia lines of general random Dirichlet series. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 919-936. doi: 10.1007/s10587-012-0074-x

[1] Davies, P. L.: Some results on the distribution of zeros of random entire functions. Proc. Lond. Math. Soc., III. Ser. 26 (1973), 99-141. | DOI | MR | Zbl

[2] Ding, X., Yu, J.: Picard points of random Dirichlet series. Bull. Sci. Math. 124 (2000), 225-238. | DOI | MR | Zbl

[3] Kahane, J.-P.: Some Random Series of Functions. 2nd Cambridge University Press, Cambridge (1985). | MR | Zbl

[4] Littlewood, J. E., Offord, A. C.: On the distribution of zeros and a-values of a random integral function. Ann. Math. 49 (1948), 885-952; Errata Ann. Math. 50 (1949), 990-991. | DOI | MR | Zbl

[5] Nevanlinna, R.: Le Théoreme de Picard-Borel et la Théorie des Functions Méromorphes. French Gauthier-Villiars, Paris (1929).

[6] Paley, R. E. A. C., Zygmund, A.: On some series of functions. I, II. Proceedings Cambridge Philos. Soc. 26 (1930), 337-357, 458-474. | DOI

[7] Paley, R. E. A. C., Zygmund, A.: On some series of functions. III. Proc. Camb. Philos. Soc. 28 (1932), 190-205. | DOI | Zbl

[8] Sun, D. C., Yu, J. R.: Sur la distribution des valeurs de certaines séries aléatoires de Dirichlet. II. French C. R. Acad. Sci., Paris, Sér. I 308 (1989), 205-207. | MR | Zbl

[9] Sun, D. C., Yu, J. R.: On the distribution of values of random Dirichlet series. II. Chin. Ann. Math., Ser. B 11 (1990), 33-44. | MR | Zbl

[10] Tian, F. J., Sun, D. C., Yu, J. R.: On random Dirichlet series. (Sur les séries aléatoires de Dirichlet). French. Abridged English version C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 427-431. | MR | Zbl

[11] Yu, C.-Y.: Sur les droites de Borel de certaines fonctions entieres. Ann. Sci. Éc. Norm. Supér., III. Sér. 68 (1951), 65-104 French. | DOI | MR | Zbl

[12] Yu, J. R.: Some properties of random Dirichlet series. Acta Math. Sin. 21 (1978), 97-118 Chinese. | MR | Zbl

[13] Yu, J. R.: Sur quelques séries gaussiennes de Dirichlet. (On some gaussian Dirichlet series). C. R. Acad. Sci., Paris, Sér. I 300 (1985), 521-522 French. | MR | Zbl

[14] Yu, J. R.: Borel lines of random Dirichlet series. Acta Math. Sci., Ser. B, Engl. Ed. 22 (2002), 1-8. | MR | Zbl

[15] Yu, J. R.: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341-353. | DOI | MR | Zbl

[16] Yu, J. R., Sun, D. C.: On the distribution of values of random Dirichlet series. I. Lectures on complex analysis, Proc. Symp., Xian/China 1987 67-95 (1988). | MR | Zbl

Cité par Sources :