Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 901-917
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\cal S}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$.
In 1999 Nina Zorboska and in 2003 P. S. Bourdon, D. Levi, S. K. Narayan and J. H. Shapiro investigated the essentially normal composition operator $C_{\varphi }$, when $\varphi $ is a linear-fractional self-map of $\mathbb {D}$. In this paper first, we investigate the essential normality problem for the operator $T_{w}C_{\varphi }$ on the Hardy space $H^{2}$, where $w$ is a bounded measurable function on $\partial \mathbb {D}$ which is continuous at each point of $F(\varphi )$, $\varphi \in {\cal S}(2)$, and $T_{w}$ is the Toeplitz operator with symbol $w$. Then we use these results and characterize the essentially normal finite linear combinations of certain linear-fractional composition operators on $H^{2}$.
DOI : 10.1007/s10587-012-0073-y
Classification : 30H10, 46E20, 47B33, 47B35
Keywords: Hardy spaces; essentially normal; composition operator; linear-fractional transformation
@article{10_1007_s10587_012_0073_y,
     author = {Fatehi, Mahsa and Robati, Bahram Khani},
     title = {Essential normality for certain finite linear combinations of linear-fractional composition operators on the {Hardy} space $H^{2}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {901--917},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0073-y},
     mrnumber = {3010247},
     zbl = {1262.47052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/}
}
TY  - JOUR
AU  - Fatehi, Mahsa
AU  - Robati, Bahram Khani
TI  - Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 901
EP  - 917
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/
DO  - 10.1007/s10587-012-0073-y
LA  - en
ID  - 10_1007_s10587_012_0073_y
ER  - 
%0 Journal Article
%A Fatehi, Mahsa
%A Robati, Bahram Khani
%T Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 901-917
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/
%R 10.1007/s10587-012-0073-y
%G en
%F 10_1007_s10587_012_0073_y
Fatehi, Mahsa; Robati, Bahram Khani. Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 901-917. doi: 10.1007/s10587-012-0073-y

[1] Aleksandrov, A. B.: Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. | MR | Zbl

[2] Bourdon, P. S.: Components of linear-fractional composition operators. J. Math. Anal. Appl. 279 (2003), 228-245. | DOI | MR | Zbl

[3] Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H.: Which linear-fractional composition operators are essentially normal?. J. Math. Anal. Appl. 280 (2003), 30-53. | DOI | MR | Zbl

[4] Chacón, G. A., Chacón, G. R.: Some properties of composition operators on the Dirichlet space. Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. | MR | Zbl

[5] Clark, D. N.: One-dimensional perturbations of restricted shifts. J. Anal. Math. 25 (1972), 169-191. | DOI | MR | Zbl

[6] Cowen, C. C.: Linear fractional composition operators on $H^{2}$. Integral Equations Oper. Theory 11 (1988), 151-160. | DOI | MR

[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. CRC Press Boca Raton (1995). | MR | Zbl

[8] Duren, P. L.: Theory of $H^{p}$ Spaces. Academic Press New York (1970). | MR

[9] Heller, K., MacCluer, B. D., Weir, R. J.: Compact differences of composition operators in several variables. Integral Equations Oper. Theory 69 (2011), 247-268. | DOI | MR | Zbl

[10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.: Toeplitz-composition $C^{\ast}$-algebras. J. Oper. Theory 58 (2007), 135-156. | MR | Zbl

[11] Kriete, T. L., Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators. Trans. Am. Math. Soc. 359 (2007), 2915-2944. | DOI | MR | Zbl

[12] MacCluer, B. D., Weir, R. J.: Essentially normal composition operators on Bergman spaces. Acta Sci. Math. 70 (2004), 799-817. | MR | Zbl

[13] MacCluer, B. D., Weir, R. J.: Linear-fractional composition operators in several variables. Integral Equations Oper. Theory 53 (2005), 373-402. | DOI | MR | Zbl

[14] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. | DOI | MR | Zbl

[15] Poltoratski, A. G.: The boundary behavior of pseudocontinuable functions. St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. | MR

[16] Ryff, J. V.: Subordinate $H^{p}$ functions. Duke Math. J. 33 (1966), 347-354. | DOI | MR

[17] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). | MR

[18] Schwartz, H. J.: Composition operators on $H^{p}$. Ph.D. Thesis University of Toledo (1969). | MR

[19] Shapiro, J. H.: Composition Operators and Classical Function Theory. Springer New York (1993). | MR | Zbl

[20] Shapiro, J. H., Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$. Indiana Univ. Math. J. 23 (1973), 471-496. | MR

[21] Zorboska, N.: Closed range essentially normal composition operators are normal. Acta Sci. Math. 65 (1999), 287-292. | MR | Zbl

Cité par Sources :