Keywords: Hardy spaces; essentially normal; composition operator; linear-fractional transformation
@article{10_1007_s10587_012_0073_y,
author = {Fatehi, Mahsa and Robati, Bahram Khani},
title = {Essential normality for certain finite linear combinations of linear-fractional composition operators on the {Hardy} space $H^{2}$},
journal = {Czechoslovak Mathematical Journal},
pages = {901--917},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0073-y},
mrnumber = {3010247},
zbl = {1262.47052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/}
}
TY - JOUR
AU - Fatehi, Mahsa
AU - Robati, Bahram Khani
TI - Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 901
EP - 917
VL - 62
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/
DO - 10.1007/s10587-012-0073-y
LA - en
ID - 10_1007_s10587_012_0073_y
ER -
%0 Journal Article
%A Fatehi, Mahsa
%A Robati, Bahram Khani
%T Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 901-917
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0073-y/
%R 10.1007/s10587-012-0073-y
%G en
%F 10_1007_s10587_012_0073_y
Fatehi, Mahsa; Robati, Bahram Khani. Essential normality for certain finite linear combinations of linear-fractional composition operators on the Hardy space $H^{2}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 901-917. doi: 10.1007/s10587-012-0073-y
[1] Aleksandrov, A. B.: Multiplicity of boundary values of inner functions. Izv. Akad. Nauk Arm. SSR, Ser. Mat. 22 (1987), 490-503. | MR | Zbl
[2] Bourdon, P. S.: Components of linear-fractional composition operators. J. Math. Anal. Appl. 279 (2003), 228-245. | DOI | MR | Zbl
[3] Bourdon, P. S., Levi, D., Narayan, S. K., Shapiro, J. H.: Which linear-fractional composition operators are essentially normal?. J. Math. Anal. Appl. 280 (2003), 30-53. | DOI | MR | Zbl
[4] Chacón, G. A., Chacón, G. R.: Some properties of composition operators on the Dirichlet space. Acta Math. Univ. Comen., New Ser. 74 (2005), 259-272. | MR | Zbl
[5] Clark, D. N.: One-dimensional perturbations of restricted shifts. J. Anal. Math. 25 (1972), 169-191. | DOI | MR | Zbl
[6] Cowen, C. C.: Linear fractional composition operators on $H^{2}$. Integral Equations Oper. Theory 11 (1988), 151-160. | DOI | MR
[7] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. CRC Press Boca Raton (1995). | MR | Zbl
[8] Duren, P. L.: Theory of $H^{p}$ Spaces. Academic Press New York (1970). | MR
[9] Heller, K., MacCluer, B. D., Weir, R. J.: Compact differences of composition operators in several variables. Integral Equations Oper. Theory 69 (2011), 247-268. | DOI | MR | Zbl
[10] Kriete, T. L., MacCluer, B. D., Moorhouse, J. L.: Toeplitz-composition $C^{\ast}$-algebras. J. Oper. Theory 58 (2007), 135-156. | MR | Zbl
[11] Kriete, T. L., Moorhouse, J. L.: Linear relations in the Calkin algebra for composition operators. Trans. Am. Math. Soc. 359 (2007), 2915-2944. | DOI | MR | Zbl
[12] MacCluer, B. D., Weir, R. J.: Essentially normal composition operators on Bergman spaces. Acta Sci. Math. 70 (2004), 799-817. | MR | Zbl
[13] MacCluer, B. D., Weir, R. J.: Linear-fractional composition operators in several variables. Integral Equations Oper. Theory 53 (2005), 373-402. | DOI | MR | Zbl
[14] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. | DOI | MR | Zbl
[15] Poltoratski, A. G.: The boundary behavior of pseudocontinuable functions. St. Petersb. Math. J. 5 (1994), 389-406 translation from 389-406 Algebra Anal. 5 (1993), 189-210. | MR
[16] Ryff, J. V.: Subordinate $H^{p}$ functions. Duke Math. J. 33 (1966), 347-354. | DOI | MR
[17] Sarason, D. E.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, Vol. 10 John Wiley & Sons New York (1994). | MR
[18] Schwartz, H. J.: Composition operators on $H^{p}$. Ph.D. Thesis University of Toledo (1969). | MR
[19] Shapiro, J. H.: Composition Operators and Classical Function Theory. Springer New York (1993). | MR | Zbl
[20] Shapiro, J. H., Taylor, P. D.: Compact, nuclear, and Hilbert-Schmidt composition operators on $H^{2}$. Indiana Univ. Math. J. 23 (1973), 471-496. | MR
[21] Zorboska, N.: Closed range essentially normal composition operators are normal. Acta Sci. Math. 65 (1999), 287-292. | MR | Zbl
Cité par Sources :