Keywords: co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex
@article{10_1007_s10587_012_0072_z,
author = {\"Ozdemir, M. Emin and Akdemir, Ahmet Ocak and Y{\i}ld{\i}z, \c{C}etin},
title = {On co-ordinated quasi-convex functions},
journal = {Czechoslovak Mathematical Journal},
pages = {889--900},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0072-z},
mrnumber = {3010246},
zbl = {1274.26067},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/}
}
TY - JOUR AU - Özdemir, M. Emin AU - Akdemir, Ahmet Ocak AU - Yıldız, Çetin TI - On co-ordinated quasi-convex functions JO - Czechoslovak Mathematical Journal PY - 2012 SP - 889 EP - 900 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/ DO - 10.1007/s10587-012-0072-z LA - en ID - 10_1007_s10587_012_0072_z ER -
%0 Journal Article %A Özdemir, M. Emin %A Akdemir, Ahmet Ocak %A Yıldız, Çetin %T On co-ordinated quasi-convex functions %J Czechoslovak Mathematical Journal %D 2012 %P 889-900 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/ %R 10.1007/s10587-012-0072-z %G en %F 10_1007_s10587_012_0072_z
Özdemir, M. Emin; Akdemir, Ahmet Ocak; Yıldız, Çetin. On co-ordinated quasi-convex functions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 889-900. doi: 10.1007/s10587-012-0072-z
[1] Alomari, M., Darus, M., Dragomir, S. S.: New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex. Tamkang J. Math. 41 353-359 (2010). | DOI | MR | Zbl
[2] Alomari, M. W., Darus, M., Kirmaci, U. S.: Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 59 225-232 (2010). | DOI | MR | Zbl
[3] Alomari, M., Darus, M.: On some inequalities Simpson-type via quasi-convex functions with applications. Transylv. J. Math. Mech. 2 (2010), 15-24. | MR
[4] Alomari, M., Darus, M.: Hadamard-type inequalities for $s$-convex functions. Int. Math. Forum 3 (2008), 1965-1975. | MR | Zbl
[5] Alomari, M., Darus, M.: The Hadamard's inequality for $s$-convex function of $2$-variables on the co-ordinates. Int. J. Math. Anal., Ruse 2 (2008), 629-638. | MR | Zbl
[6] Alomari, M., Darus, M.: Coordinated $s$-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567. | MR | Zbl
[7] Dragomir, S. S.: On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 (2001), 775-788. | DOI | MR | Zbl
[8] Dragomir, S. S., Pearce, C. E. M.: Quasi-convex functions and Hadamard's inequality. Bull. Aust. Math. Soc. 57 (1998), 377-385. | DOI | MR | Zbl
[9] Hwang, D. Y., Tseng, K. L., Yang, G. S.: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwanese J. Math. 11 (2007), 63-73. | DOI | MR | Zbl
[10] Ion, D. A.: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88. | MR | Zbl
[11] Bakula, M. Klaričić, Pečarić, J.: On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane. Taiwanese J. Math. 10 (2006), 1271-1292. | DOI | MR
[12] Latif, M. A., Alomari, M.: On Hadamard-type inequalities for $h$-convex functions on the co-ordinates. Int. J. Math. Anal., Ruse 3 (2009), 1645-1656. | MR
[13] Latif, M. A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4 (2009), 2327-2338. | MR | Zbl
[14] Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M.: Inequalities for convex and $s$-convex functions on $\Delta =[a,b]\times[c,d]$. J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20. | DOI | MR
[15] Özdemir, M. E., Latif, M. A., Akdemir, A. O.: On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates. J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21. | DOI | MR
[16] Özdemir, M. E., Set, E., kaya, M. Z. Sarı: Some new Hadamard type inequalities for co-ordinated $m$-convex and $(\alpha ,m)$-convex functions. Hacet. J. Math. Stat. 40 219-229 (2011). | MR
[17] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992). | MR | Zbl
[18] Tseng, K.-L., Yang, G.-S., Dragomir, S. S.: On quasi convex functions and Hadamard's inequality. Demonstr. Math. 41 323-336 (2008). | MR | Zbl
[19] Wright, E. M.: An inequality for convex functions. Amer. Math. Monthly 61 (1954), 620-622. | DOI | MR | Zbl
Cité par Sources :