On co-ordinated quasi-convex functions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 889-900
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if $$ f( tx+( 1-t) y) \leq tf( x) +(1-t) f( y) $$ holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. \endgraf We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir's results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.
A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if $$ f( tx+( 1-t) y) \leq tf( x) +(1-t) f( y) $$ holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. \endgraf We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir's results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.
DOI : 10.1007/s10587-012-0072-z
Classification : 26B25, 26D15
Keywords: co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex
@article{10_1007_s10587_012_0072_z,
     author = {\"Ozdemir, M. Emin and Akdemir, Ahmet Ocak and Y{\i}ld{\i}z, \c{C}etin},
     title = {On co-ordinated quasi-convex functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {889--900},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0072-z},
     mrnumber = {3010246},
     zbl = {1274.26067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/}
}
TY  - JOUR
AU  - Özdemir, M. Emin
AU  - Akdemir, Ahmet Ocak
AU  - Yıldız, Çetin
TI  - On co-ordinated quasi-convex functions
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 889
EP  - 900
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/
DO  - 10.1007/s10587-012-0072-z
LA  - en
ID  - 10_1007_s10587_012_0072_z
ER  - 
%0 Journal Article
%A Özdemir, M. Emin
%A Akdemir, Ahmet Ocak
%A Yıldız, Çetin
%T On co-ordinated quasi-convex functions
%J Czechoslovak Mathematical Journal
%D 2012
%P 889-900
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0072-z/
%R 10.1007/s10587-012-0072-z
%G en
%F 10_1007_s10587_012_0072_z
Özdemir, M. Emin; Akdemir, Ahmet Ocak; Yıldız, Çetin. On co-ordinated quasi-convex functions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 889-900. doi: 10.1007/s10587-012-0072-z

[1] Alomari, M., Darus, M., Dragomir, S. S.: New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex. Tamkang J. Math. 41 353-359 (2010). | DOI | MR | Zbl

[2] Alomari, M. W., Darus, M., Kirmaci, U. S.: Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comput. Math. Appl. 59 225-232 (2010). | DOI | MR | Zbl

[3] Alomari, M., Darus, M.: On some inequalities Simpson-type via quasi-convex functions with applications. Transylv. J. Math. Mech. 2 (2010), 15-24. | MR

[4] Alomari, M., Darus, M.: Hadamard-type inequalities for $s$-convex functions. Int. Math. Forum 3 (2008), 1965-1975. | MR | Zbl

[5] Alomari, M., Darus, M.: The Hadamard's inequality for $s$-convex function of $2$-variables on the co-ordinates. Int. J. Math. Anal., Ruse 2 (2008), 629-638. | MR | Zbl

[6] Alomari, M., Darus, M.: Coordinated $s$-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567. | MR | Zbl

[7] Dragomir, S. S.: On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 5 (2001), 775-788. | DOI | MR | Zbl

[8] Dragomir, S. S., Pearce, C. E. M.: Quasi-convex functions and Hadamard's inequality. Bull. Aust. Math. Soc. 57 (1998), 377-385. | DOI | MR | Zbl

[9] Hwang, D. Y., Tseng, K. L., Yang, G. S.: Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwanese J. Math. 11 (2007), 63-73. | DOI | MR | Zbl

[10] Ion, D. A.: Some estimates on the Hermite-Hadamard inequality through quasi-convex functions. An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88. | MR | Zbl

[11] Bakula, M. Klaričić, Pečarić, J.: On the Jensen's inequality for convex functions on the coordinates in a rectangle from the plane. Taiwanese J. Math. 10 (2006), 1271-1292. | DOI | MR

[12] Latif, M. A., Alomari, M.: On Hadamard-type inequalities for $h$-convex functions on the co-ordinates. Int. J. Math. Anal., Ruse 3 (2009), 1645-1656. | MR

[13] Latif, M. A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4 (2009), 2327-2338. | MR | Zbl

[14] Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M.: Inequalities for convex and $s$-convex functions on $\Delta =[a,b]\times[c,d]$. J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20. | DOI | MR

[15] Özdemir, M. E., Latif, M. A., Akdemir, A. O.: On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates. J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21. | DOI | MR

[16] Özdemir, M. E., Set, E., kaya, M. Z. Sarı: Some new Hadamard type inequalities for co-ordinated $m$-convex and $(\alpha ,m)$-convex functions. Hacet. J. Math. Stat. 40 219-229 (2011). | MR

[17] Pečarić, J. E., Proschan, F., Tong, Y. L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992). | MR | Zbl

[18] Tseng, K.-L., Yang, G.-S., Dragomir, S. S.: On quasi convex functions and Hadamard's inequality. Demonstr. Math. 41 323-336 (2008). | MR | Zbl

[19] Wright, E. M.: An inequality for convex functions. Amer. Math. Monthly 61 (1954), 620-622. | DOI | MR | Zbl

Cité par Sources :