Keywords: stochastic skew-evolution semiflow; nonuniform exponential dichotomy in mean square
@article{10_1007_s10587_012_0071_0,
author = {Stoica, Diana and Megan, Mihail},
title = {On nonuniform dichotomy for stochastic skew-evolution semiflows in {Hilbert} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {879--887},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0071-0},
mrnumber = {3010245},
zbl = {1274.37044},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0071-0/}
}
TY - JOUR AU - Stoica, Diana AU - Megan, Mihail TI - On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces JO - Czechoslovak Mathematical Journal PY - 2012 SP - 879 EP - 887 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0071-0/ DO - 10.1007/s10587-012-0071-0 LA - en ID - 10_1007_s10587_012_0071_0 ER -
%0 Journal Article %A Stoica, Diana %A Megan, Mihail %T On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces %J Czechoslovak Mathematical Journal %D 2012 %P 879-887 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0071-0/ %R 10.1007/s10587-012-0071-0 %G en %F 10_1007_s10587_012_0071_0
Stoica, Diana; Megan, Mihail. On nonuniform dichotomy for stochastic skew-evolution semiflows in Hilbert spaces. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 879-887. doi: 10.1007/s10587-012-0071-0
[1] Arnold, L.: Stochastic Differential Equations: Theory and Applications. A Wiley-Interscience Publication. New York etc.: John Wiley & Sons (1974). | MR | Zbl
[2] Ateiwi, A. M.: About bounded solutions of linear stochastic Ito systems. Miskolc Math. Notes 3 (2002), 3-12 | DOI | MR
[3] Bensoussan, A., Flandoli, F.: Stochastic inertial manifold. Stochastics and Stochastics Reports 53 (1995), 13-39. | DOI | MR | Zbl
[4] Buse, C., Barbu, D.: The Lyapunov equations and nonuniform exponential stability. Stud. Cerc. Mat. 49 (1997), 25-31. | MR | Zbl
[5] Caraballo, T., Duan, J., Lu, K., Schmalfuss, B.: Invariant manifolds for random and stochastic partial differential equations. Adv. Nonlinear Stud. 10 (2010), 23-52. | DOI | MR | Zbl
[6] Prato, G. Da, Ichikawa, A.: Lyapunov equations for time-varying linear systems. Systems Control Lett. 9 (1987), 165-172. | DOI | MR | Zbl
[7] Prato, G. Da, Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. 44 Cambridge etc. Cambridge University Press (1992). | MR | Zbl
[8] Datko, R.: Uniform asymptotic stability of evolutionary processes in a Banach space. SIAM J. Math. Anal. 3 (1972), 428-445. | DOI | MR | Zbl
[9] Flandoli, F.: Stochastic flows for nonlinear second-order parabolic SPDE. Ann. Probab. 24 (1996), 547-558. | DOI | MR | Zbl
[10] Lemle, L. D., Wu, L.: Uniqueness of $C_{0}$-semigroups on a general locally convex vector space and an application. Semigroup Forum 82 (2011), 485-496. | DOI | MR | Zbl
[11] Lupa., N., Megan, M., Popa, I. L.: On weak exponential stability of evolution operators in Banach spaces. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 2445-2450. | DOI | MR | Zbl
[12] Megan, M., Sasu, A. L., Sasu, B.: Nonuniform exponential unstability of evolution operators in Banach spaces. Glas. Mat., III. Ser. 36 (2001), 287-295. | MR | Zbl
[13] Mohammed, S. - E. A., Zhang, T., Zhao, H.: The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations. Mem. Am. Math. Soc. 196 (2008), 1-105. | MR | Zbl
[14] Skorohod, A. V.: Random Linear Operators, Transl. from the Russian. Mathematics and Its Applications. Soviet Series., D. Reidel Publishing Company, Dordrecht, Boston, Lancaster (1984). | MR
[15] Stoica, C., Megan, M.: Nonuniform behaviors for skew-evolution semiflows in Banach spaces. Operator theory live. Proceedings of the 22nd international conference on operator theory, Timişoara, Romania, July 3-8, 2008. Bucharest: The Theta Foundation. Theta Series in Advanced Mathematics 12 (2010), 203-211. | MR
[16] Stoica, D.: Uniform exponential dichotomy of stochastic cocycles. Stochastic Process. Appl. 12 (2010), 1920-1928. | DOI | MR | Zbl
Cité par Sources :