Keywords: Laplacian spectrum; signless Laplacian spectrum; complement graph
@article{10_1007_s10587_012_0067_9,
author = {Liu, Muhuo},
title = {Some graphs determined by their (signless) {Laplacian} spectra},
journal = {Czechoslovak Mathematical Journal},
pages = {1117--1134},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0067-9},
mrnumber = {3010260},
zbl = {1274.05299},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0067-9/}
}
TY - JOUR AU - Liu, Muhuo TI - Some graphs determined by their (signless) Laplacian spectra JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1117 EP - 1134 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0067-9/ DO - 10.1007/s10587-012-0067-9 LA - en ID - 10_1007_s10587_012_0067_9 ER -
Liu, Muhuo. Some graphs determined by their (signless) Laplacian spectra. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1117-1134. doi: 10.1007/s10587-012-0067-9
[1] Borovićanin, B., Petrović, M.: On the index of cactuses with $n$ vertices. Publ. Inst. Math., Nouv. Sér. 79(93) (2006), 13-18. | DOI | MR
[2] Čvetković, D., Rowlinson, P., Simić, S. K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423 (2007), 155-171. | DOI | MR | Zbl
[3] Cvetković, D., Simić, S. K.: Towards a spectral theory of graphs based on the signless Laplacian II. Linear Algebra Appl. 432 (2010), 2257-2272. | MR | Zbl
[4] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. | MR
[5] Das, K. Ch.: The Laplacian spectrum of a graph. Comput. Math. Appl. 48 (2004), 715-724. | DOI | MR | Zbl
[6] Das, K. Ch.: On conjectures involving second largest signless Laplacian eigenvalue of graphs. Linear Algebra Appl. 432 (2010), 3018-3029. | DOI | MR | Zbl
[7] Doob, M., Haemers, W. H.: The complement of the path is determined by its spectrum. Linear Algebra Appl. 356 (2002), 57-65. | MR | Zbl
[8] Du, Z. B., Liu, Z. Z.: On the Estrada and Laplacian Estrada indices of graphs. Linear Algebra Appl. 435 (2011), 2065-2076. | DOI | MR | Zbl
[9] Du, Z. B., Zhou, B.: Minimum on Wiener indices of trees and unicyclic graphs of the given matching number. MATCH Commun. Math. Comput. Chem. 63 (2010), 101-112. | MR
[10] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(98) (1973), 298-305. | MR | Zbl
[11] Guo, J. M.: The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl. 413 (2006), 59-71. | MR | Zbl
[12] Haemers, W. H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226-228 (1995), 593-616. | MR | Zbl
[13] Heuvel, J. van den: Hamilton cycles and eigenvalues of graphs. Linear Algebra Appl. 226-228 (1995), 723-730. | MR
[14] Horn, R. A., Johnson, C. R.: Matrix Analysis. Cambridge University Press XIII, Cambridge (1985). | MR | Zbl
[15] Ilić, A.: Trees with minimal Laplacian coefficients. Comput. Math. Appl. 59 (2010), 2776-2783. | DOI | MR | Zbl
[16] Li, J. S., Pan, Y. L.: A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear Algebra 48 (2000), 117-121. | DOI | MR | Zbl
[17] Li, S. C., Zhang, M. J.: On the signless Laplacian index of cacti with a given number of pendant vertices. Linear Algebra Appl. 436 (2012), 4400-4411. | MR | Zbl
[18] Liu, B. L.: Combinatorial Matrix Theory. Science Press, Beijing (2005), Chinese.
[19] Liu, H. Q., Lu, M.: A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem. 58 (2007), 183-194. | MR | Zbl
[20] Liu, M. H., Tan, X. Z., Liu, B. L.: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Czech. Math. J. 60 (2010), 849-867. | DOI | MR | Zbl
[21] Liu, M. H., Liu, B. L., Wei, F. Y.: Graphs determined by their (signless) Laplacian spectra. Electron. J. Linear Algebra 22 (2011), 112-124. | MR | Zbl
[22] Liu, X. G., Zhang, Y. P., Gui, X. Q.: The multi-fan graphs are determined by their Laplacian spectra. Discrete Math. 308 (2008), 4267-4271. | DOI | MR | Zbl
[23] Lotker, Z.: Note on deleting a vertex and weak interlacing of the Laplacian spectrum. Electron. J. Linear Algebra. 16 (2007), 68-72. | DOI | MR | Zbl
[24] Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra Appl. 197-198 (1994), 143-176. | MR | Zbl
[25] Pan, Y. L.: Sharp upper bounds for the Laplacian graph eigenvalues. Linear Algebra Appl. 355 (2002), 287-295. | MR | Zbl
[26] Radosavljević, Z., sajski, M. Ra\u: A class of reflexive cactuses with four cycles. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 14 (2003), 64-85. | MR
[27] Shen, X. L., Hou, Y. P.: A class of unicyclic graphs determined by their Laplacian spectrum. Electron. J. Linear Algebra. 23 (2012), 375-386. | MR
[28] Yu, G. H., Feng, L. H., Ilić, A.: The hyper-Wiener index of trees with given parameters. Ars Comb. 96 (2010), 395-404. | MR | Zbl
[29] Zhang, X. L., Zhang, H. P.: Some graphs determined by their spectra. Linear Algebra Appl. 431 (2009), 1443-1454. | DOI | MR | Zbl
[30] Zhang, Y. P., Liu, X. G., Yong, X. R.: Which wheel graphs are determined by their Laplacian spectra?. Comput Math. Appl. 58 (2009), 1887-1890. | DOI | MR | Zbl
[31] Zhang, Y. P., Liu, X. G., Zhang, B. Y., Yong, X. R.: The lollipop graph is determined by its $Q$-spectrum. Discrete Math. 309 (2009), 3364-3369. | DOI | MR | Zbl
Cité par Sources :