Keywords: finite rank elements; quasinilpotent equivalence; normal elements
@article{10_1007_s10587_012_0066_x,
author = {Brits, Rudi M. and Raubenheimer, Heinrich},
title = {Finite spectra and quasinilpotent equivalence in {Banach} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {1101--1116},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0066-x},
mrnumber = {3010259},
zbl = {1274.46094},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0066-x/}
}
TY - JOUR AU - Brits, Rudi M. AU - Raubenheimer, Heinrich TI - Finite spectra and quasinilpotent equivalence in Banach algebras JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1101 EP - 1116 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0066-x/ DO - 10.1007/s10587-012-0066-x LA - en ID - 10_1007_s10587_012_0066_x ER -
%0 Journal Article %A Brits, Rudi M. %A Raubenheimer, Heinrich %T Finite spectra and quasinilpotent equivalence in Banach algebras %J Czechoslovak Mathematical Journal %D 2012 %P 1101-1116 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0066-x/ %R 10.1007/s10587-012-0066-x %G en %F 10_1007_s10587_012_0066_x
Brits, Rudi M.; Raubenheimer, Heinrich. Finite spectra and quasinilpotent equivalence in Banach algebras. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1101-1116. doi: 10.1007/s10587-012-0066-x
[1] Aupetit, B.: A Primer on Spectral Theory. Springer New York (1991). | MR | Zbl
[2] Aupetit, B., Mouton, H. du T.: Trace and determinant in Banach algebras. Stud. Math. 121 (1996), 115-136. | MR | Zbl
[3] Bonsall, F. F., Duncan, J.: Complete Normed Algebras. Springer New York (1973). | MR | Zbl
[4] Brits, R.: Perturbation and spectral discontinuity in Banach algebras. Stud. Math. 203 (2011), 253-263. | DOI | MR
[5] a, I. Colojoar\v, Foiaş, C.: Quasi-nilpotent equivalence of not necessarily commuting operators. J. Math. Mech. 15 (1966), 521-540. | MR
[6] a, I. Colojoar\v, Foiaş, C.: Theory of Generalized Spectral Operators. Mathematics and its Applications. 9 New York-London-Paris: Gordon and Breach Science Publishers (1968). | MR
[7] Foiaş, C., Vasilescu, F.-H.: On the spectral theory of commutators. J. Math. Anal. Appl. 31 (1970), 473-486. | DOI | MR
[8] Harte, R.: On rank one elements. Stud. Math. 117 (1995), 73-77. | DOI | MR | Zbl
[9] Mouton, S., Raubenheimer, H.: More spectral theory in ordered Banach algebras. Positivity 1 (1997), 305-317. | DOI | MR | Zbl
[10] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory: Advances and Applications Basel: Birkhäuser (2003). | MR
[11] Puhl, J.: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J. 28 (1978), 656-676. | MR | Zbl
[12] Raubenheimer, H.: On quasinilpotent equivalence in Banach algebras. Czech. Math. J. 60 (2010), 589-596. | DOI | MR
[13] Razpet, M.: The quasinilpotent equivalence in Banach algebras. J. Math. Anal. Appl. 166 (1992), 378-385. | DOI | MR | Zbl
Cité par Sources :