Decomposition of $\ell $-group-valued measures
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras.
We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras.
DOI : 10.1007/s10587-012-0065-y
Classification : 06C15, 06F15, 28B10, 28B15
Keywords: D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
@article{10_1007_s10587_012_0065_y,
     author = {Barbieri, Giuseppina and Valente, Antonietta and Weber, Hans},
     title = {Decomposition of $\ell $-group-valued measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1085--1100},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0065-y},
     mrnumber = {3010258},
     zbl = {1274.28025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/}
}
TY  - JOUR
AU  - Barbieri, Giuseppina
AU  - Valente, Antonietta
AU  - Weber, Hans
TI  - Decomposition of $\ell $-group-valued measures
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1085
EP  - 1100
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/
DO  - 10.1007/s10587-012-0065-y
LA  - en
ID  - 10_1007_s10587_012_0065_y
ER  - 
%0 Journal Article
%A Barbieri, Giuseppina
%A Valente, Antonietta
%A Weber, Hans
%T Decomposition of $\ell $-group-valued measures
%J Czechoslovak Mathematical Journal
%D 2012
%P 1085-1100
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/
%R 10.1007/s10587-012-0065-y
%G en
%F 10_1007_s10587_012_0065_y
Barbieri, Giuseppina; Valente, Antonietta; Weber, Hans. Decomposition of $\ell $-group-valued measures. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100. doi: 10.1007/s10587-012-0065-y

[1] Avallone, A., Vitolo, P.: Congruences and ideals of effect algebras. Order 20 (2003), 67-77. | DOI | MR | Zbl

[2] Avallone, A., Barbieri, G., Vitolo, P.: On the Alexandroff decomposition theorem. Math. Slovaca 58 (2008), 185-200. | DOI | MR | Zbl

[3] Avallone, A., Barbieri, G., Vitolo, P., Weber, H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem. Algebra Univers. 60 (2009), 1-18. | MR | Zbl

[4] Birkhoff, G.: Lattice Theory. American Mathematical Society New York (1940). | MR | Zbl

[5] Rao, K. P. S. Bhaskara, Rao, M. Bhaskara: Theory of Charges. A Study of Finitely Additive Measures. Pure and Applied Mathematics, 109 Academic Press, a Subsidiary of Harcourt Brace Jovanovich, Publishers (1983). | MR

[6] Boccuto, A., Candeloro, D.: Sobczyk-Hammer decompositions and convergence theorems for measures with values in $\ell$-groups. Real Anal. Exch. 33 (2008), 91-106. | DOI | MR

[7] Iglesias, M. Congost: Measures and probabilities in ordered structures. Stochastica 5 (1981), 45-68. | MR

[8] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Dordrecht: Kluwer Academic Publishers Bratislava: Ister Science (2000). | MR

[9] Fleischer, I., Traynor, T.: Group-valued modular functions. Algebra Univers. 14 (1982), 287-291. | DOI | MR | Zbl

[10] Glass, A. M. W., Holland, W. C.: Lattice-ordered Groups. Advances and Techniques Kluwer Academic Publishers (1989). | MR | Zbl

[11] Hammer, P. C., Sobczyk, A.: The ranges of additive set functions. Duke Math. J. 11 (1944), 847-851. | DOI | MR | Zbl

[12] Riesz, F.: Sur quelques notions fondamentales dans la théorie générale des opérations linéaires. Ann. Math. 41 (1940), 174-206 French. | DOI | MR | Zbl

[13] Schmidt, K. D.: Jordan Decompositions of Generalized Vector Measures. Pitman Research Notes in Mathematics Series, 214 Harlow: Longman Scientific & Technical; New York etc.: John Wiley & Sons, Inc. (1989). | MR | Zbl

[14] Schmidt, K. D.: Decomposition and extension of abstract measures in Riesz spaces. Rend. Ist. Mat. Univ. Trieste 29 (1998), 135-213. | MR | Zbl

Cité par Sources :