Ideal convergence and divergence of nets in $(\ell )$-groups
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1073-1083
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce the ${\mathcal I}$- and ${\mathcal I}^*$-convergence and divergence of nets in $(\ell )$-groups. We prove some theorems relating different types of convergence/divergence for nets in $(\ell )$-group setting, in relation with ideals. We consider both order and $(D)$-convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that ${\mathcal I}^*$-convergence/divergence implies ${\mathcal I}$-convergence/divergence for every ideal, admissible for the set of indexes with respect to which the net involved is directed, and we investigate a class of ideals for which the converse implication holds. Finally we pose some open problems.
In this paper we introduce the ${\mathcal I}$- and ${\mathcal I}^*$-convergence and divergence of nets in $(\ell )$-groups. We prove some theorems relating different types of convergence/divergence for nets in $(\ell )$-group setting, in relation with ideals. We consider both order and $(D)$-convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that ${\mathcal I}^*$-convergence/divergence implies ${\mathcal I}$-convergence/divergence for every ideal, admissible for the set of indexes with respect to which the net involved is directed, and we investigate a class of ideals for which the converse implication holds. Finally we pose some open problems.
DOI : 10.1007/s10587-012-0064-z
Classification : 28B10, 28B15, 54A20
Keywords: net; $(\ell )$-group; ideal; ideal order; $(D)$-convergence; ideal divergence
@article{10_1007_s10587_012_0064_z,
     author = {Boccuto, Antonio and Dimitriou, Xenofon and Papanastassiou, Nikolaos},
     title = {Ideal convergence and divergence of nets in $(\ell )$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1073--1083},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0064-z},
     mrnumber = {3010257},
     zbl = {1274.28026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/}
}
TY  - JOUR
AU  - Boccuto, Antonio
AU  - Dimitriou, Xenofon
AU  - Papanastassiou, Nikolaos
TI  - Ideal convergence and divergence of nets in $(\ell )$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1073
EP  - 1083
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/
DO  - 10.1007/s10587-012-0064-z
LA  - en
ID  - 10_1007_s10587_012_0064_z
ER  - 
%0 Journal Article
%A Boccuto, Antonio
%A Dimitriou, Xenofon
%A Papanastassiou, Nikolaos
%T Ideal convergence and divergence of nets in $(\ell )$-groups
%J Czechoslovak Mathematical Journal
%D 2012
%P 1073-1083
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/
%R 10.1007/s10587-012-0064-z
%G en
%F 10_1007_s10587_012_0064_z
Boccuto, Antonio; Dimitriou, Xenofon; Papanastassiou, Nikolaos. Ideal convergence and divergence of nets in $(\ell )$-groups. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1073-1083. doi: 10.1007/s10587-012-0064-z

[1] Athanassiadou, E., Boccuto, A., Dimitriou, X., Papanastassiou, N.: Ascoli-type theorems and ideal $(\alpha)$-convergence. Filomat 26 (2012), 397-405. | DOI | MR

[2] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.

[3] Boccuto, A., Candeloro, D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups. J. Math. Anal. Appl. 265 (2002), 170-194. | DOI | MR | Zbl

[4] Boccuto, A., Candeloro, D.: Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. | MR | Zbl

[5] Boccuto, A., Candeloro, D.: Integral and ideals in Riesz spaces. Inf. Sci. 179 (2009), 2891-2902. | DOI | MR | Zbl

[6] Boccuto, A., Candeloro, D.: Defining limits by means of integrals. Oper. Theory Adv. Appl. 201 (2010), 79-87. | MR | Zbl

[7] Boccuto, A., Das, P., Dimitriou, X., Papanastassiou, N.: Ideal exhaustiveness, weak convergence and weak compactness in Banach spaces. Real Anal. Exch. 37 (2012), 409-430. | MR

[8] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Unconditional convergence in lattice groups with respect to ideals. Commentat. Math. 50 (2010), 161-174. | MR | Zbl

[9] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in $(l)$-groups. Tatra Mt. Math. Publ. 49 (2011), 17-26. | MR

[10] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Basic matrix theorems for ${\mathcal I}$-convergence in $(\ell)$-groups. Math. Slovaca 62 (2012), 1-23. | DOI | MR

[11] Boccuto, A., Dimitriou, X., Papanastassiou, N., Wilczyński, W.: Ideal exhaustiveness, continuity and $(\alpha)$-convergence for lattice group-valued functions. Int. J. Pure Appl. Math. 70 (2011), 211-227. | MR | Zbl

[12] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Singapore (2009).

[13] Činčura, J., Šalát, T., Sleziak, M., Toma, V.: Sets of statistical cluster points and ${\mathcal I}$-cluster points. Real Anal. Exch. 30 (2004-2005), 565-580. | MR

[14] Das, P., Ghosal, S. K.: On $I$-Cauchy nets and completeness. Topology Appl. 157 (2010), 1152-1156. | DOI | MR | Zbl

[15] Das, P., Ghosal, S. K.: Some further results on ${\mathcal I}$-Cauchy sequences and condition $(AP)$. Comput. Math. Appl. 59 (2010), 2597-2600. | DOI | MR

[16] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^*$-convergence of double sequences. Math. Slovaca 58 (2008), 605-620. | DOI | MR | Zbl

[17] Das, P., Lahiri, B. K.: ${\mathcal I}$ and ${\mathcal I}^*$-convergence of nets. Real Anal. Exch. 33 (2007-2008), 431-442. | MR

[18] Das, P., Malik, P.: On extremal ${\mathcal I}$-limit points of double sequences. Tatra Mt. Math. Publ. 40 (2008), 91-102. | MR

[19] Demirci, K.: $I$-limit superior and limit inferior. Math. Commun. 6 (2001), 165-172. | MR | Zbl

[20] Dems, K.: On ${\mathcal I}$-Cauchy sequences. Real Anal. Exch. 30 (2004-2005), 123-128. | MR

[21] Gregoriades, V., Papanastassiou, N.: The notion of exhaustiveness and Ascoli-type theorems. Topology Appl. 155 (2008), 1111-1128. | DOI | MR | Zbl

[22] Gürdal, M., Şahiner, A.: Extremal ${\mathcal I}$-limit points of double sequences. Appl. Math. E-Notes 8 (2008), 131-137. | MR

[23] Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: ${\mathcal I}$-convergence and extremal ${\mathcal I}$-limit points. Math. Slovaca 55 (2005), 443-464. | MR

[24] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-convergence. Real Anal. Exch. 26 (2000-2001), 669-685. | MR

[25] Kumar, V.: On $I$ and $I^*$-convergence of double sequences. Math. Commun. 12 (2007), 171-181. | MR | Zbl

[26] Lahiri, B. K., Das, P.: Further results on ${\mathcal I}$-limit superior and limit inferior. Math. Commun. 8 (2003), 151-156. | MR

[27] Lahiri, B. K., Das, P.: $I$ and $I^*$-convergence in topological spaces. Math. Bohem. 130 (2005), 153-160. | MR | Zbl

[28] Letavaj, P.: ${\mathcal I}$-convergence to a set. Acta Math. Univ. Comen., New Ser. 80 (2011), 103-106. | MR

[29] Nabiev, A., Pehlivan, S., Gürdal, M.: On ${\mathcal I}$-Cauchy sequences. Taiwanese J. Math. 11 (2007), 569-576. | DOI | MR

[30] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245 (2000), 513-527. | DOI | MR | Zbl

[31] Pehlivan, S., Şençimen, C., Yaman, Z. H.: On weak ideal convergence in normed spaces. J. Interdiscip. Math. 13 (2010), 153-162. | DOI | MR | Zbl

[32] Šalát, T., Tripathy, B. C., Ziman, M.: On some properties of ${\mathcal I}$-convergence. Tatra Mt. Math. Publ. 28 (2004), 274-286. | MR

[33] Šalát, T., Tripathy, B. C., Ziman, M.: On ${\mathcal I}$-convergence field. Ital. J. Pure Appl. Math. 17 (2005), 45-54. | MR

[34] Swartz, C.: The Nikodým boundedness theorem for lattice-valued measures. Arch. Math. 53 (1989), 390-393. | DOI | MR | Zbl

[35] Tripathy, B., Tripathy, B. C.: On $I$-convergent double sequences. Soochow J. Math. 31 (2005), 549-560. | MR | Zbl

Cité par Sources :