Keywords: net; $(\ell )$-group; ideal; ideal order; $(D)$-convergence; ideal divergence
@article{10_1007_s10587_012_0064_z,
author = {Boccuto, Antonio and Dimitriou, Xenofon and Papanastassiou, Nikolaos},
title = {Ideal convergence and divergence of nets in $(\ell )$-groups},
journal = {Czechoslovak Mathematical Journal},
pages = {1073--1083},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0064-z},
mrnumber = {3010257},
zbl = {1274.28026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/}
}
TY - JOUR AU - Boccuto, Antonio AU - Dimitriou, Xenofon AU - Papanastassiou, Nikolaos TI - Ideal convergence and divergence of nets in $(\ell )$-groups JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1073 EP - 1083 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/ DO - 10.1007/s10587-012-0064-z LA - en ID - 10_1007_s10587_012_0064_z ER -
%0 Journal Article %A Boccuto, Antonio %A Dimitriou, Xenofon %A Papanastassiou, Nikolaos %T Ideal convergence and divergence of nets in $(\ell )$-groups %J Czechoslovak Mathematical Journal %D 2012 %P 1073-1083 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0064-z/ %R 10.1007/s10587-012-0064-z %G en %F 10_1007_s10587_012_0064_z
Boccuto, Antonio; Dimitriou, Xenofon; Papanastassiou, Nikolaos. Ideal convergence and divergence of nets in $(\ell )$-groups. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1073-1083. doi: 10.1007/s10587-012-0064-z
[1] Athanassiadou, E., Boccuto, A., Dimitriou, X., Papanastassiou, N.: Ascoli-type theorems and ideal $(\alpha)$-convergence. Filomat 26 (2012), 397-405. | DOI | MR
[2] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.
[3] Boccuto, A., Candeloro, D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups. J. Math. Anal. Appl. 265 (2002), 170-194. | DOI | MR | Zbl
[4] Boccuto, A., Candeloro, D.: Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. | MR | Zbl
[5] Boccuto, A., Candeloro, D.: Integral and ideals in Riesz spaces. Inf. Sci. 179 (2009), 2891-2902. | DOI | MR | Zbl
[6] Boccuto, A., Candeloro, D.: Defining limits by means of integrals. Oper. Theory Adv. Appl. 201 (2010), 79-87. | MR | Zbl
[7] Boccuto, A., Das, P., Dimitriou, X., Papanastassiou, N.: Ideal exhaustiveness, weak convergence and weak compactness in Banach spaces. Real Anal. Exch. 37 (2012), 409-430. | MR
[8] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Unconditional convergence in lattice groups with respect to ideals. Commentat. Math. 50 (2010), 161-174. | MR | Zbl
[9] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in $(l)$-groups. Tatra Mt. Math. Publ. 49 (2011), 17-26. | MR
[10] Boccuto, A., Dimitriou, X., Papanastassiou, N.: Basic matrix theorems for ${\mathcal I}$-convergence in $(\ell)$-groups. Math. Slovaca 62 (2012), 1-23. | DOI | MR
[11] Boccuto, A., Dimitriou, X., Papanastassiou, N., Wilczyński, W.: Ideal exhaustiveness, continuity and $(\alpha)$-convergence for lattice group-valued functions. Int. J. Pure Appl. Math. 70 (2011), 211-227. | MR | Zbl
[12] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Singapore (2009).
[13] Činčura, J., Šalát, T., Sleziak, M., Toma, V.: Sets of statistical cluster points and ${\mathcal I}$-cluster points. Real Anal. Exch. 30 (2004-2005), 565-580. | MR
[14] Das, P., Ghosal, S. K.: On $I$-Cauchy nets and completeness. Topology Appl. 157 (2010), 1152-1156. | DOI | MR | Zbl
[15] Das, P., Ghosal, S. K.: Some further results on ${\mathcal I}$-Cauchy sequences and condition $(AP)$. Comput. Math. Appl. 59 (2010), 2597-2600. | DOI | MR
[16] Das, P., Kostyrko, P., Wilczyński, W., Malik, P.: $I$ and $I^*$-convergence of double sequences. Math. Slovaca 58 (2008), 605-620. | DOI | MR | Zbl
[17] Das, P., Lahiri, B. K.: ${\mathcal I}$ and ${\mathcal I}^*$-convergence of nets. Real Anal. Exch. 33 (2007-2008), 431-442. | MR
[18] Das, P., Malik, P.: On extremal ${\mathcal I}$-limit points of double sequences. Tatra Mt. Math. Publ. 40 (2008), 91-102. | MR
[19] Demirci, K.: $I$-limit superior and limit inferior. Math. Commun. 6 (2001), 165-172. | MR | Zbl
[20] Dems, K.: On ${\mathcal I}$-Cauchy sequences. Real Anal. Exch. 30 (2004-2005), 123-128. | MR
[21] Gregoriades, V., Papanastassiou, N.: The notion of exhaustiveness and Ascoli-type theorems. Topology Appl. 155 (2008), 1111-1128. | DOI | MR | Zbl
[22] Gürdal, M., Şahiner, A.: Extremal ${\mathcal I}$-limit points of double sequences. Appl. Math. E-Notes 8 (2008), 131-137. | MR
[23] Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: ${\mathcal I}$-convergence and extremal ${\mathcal I}$-limit points. Math. Slovaca 55 (2005), 443-464. | MR
[24] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-convergence. Real Anal. Exch. 26 (2000-2001), 669-685. | MR
[25] Kumar, V.: On $I$ and $I^*$-convergence of double sequences. Math. Commun. 12 (2007), 171-181. | MR | Zbl
[26] Lahiri, B. K., Das, P.: Further results on ${\mathcal I}$-limit superior and limit inferior. Math. Commun. 8 (2003), 151-156. | MR
[27] Lahiri, B. K., Das, P.: $I$ and $I^*$-convergence in topological spaces. Math. Bohem. 130 (2005), 153-160. | MR | Zbl
[28] Letavaj, P.: ${\mathcal I}$-convergence to a set. Acta Math. Univ. Comen., New Ser. 80 (2011), 103-106. | MR
[29] Nabiev, A., Pehlivan, S., Gürdal, M.: On ${\mathcal I}$-Cauchy sequences. Taiwanese J. Math. 11 (2007), 569-576. | DOI | MR
[30] Nuray, F., Ruckle, W. H.: Generalized statistical convergence and convergence free spaces. J. Math. Anal. Appl. 245 (2000), 513-527. | DOI | MR | Zbl
[31] Pehlivan, S., Şençimen, C., Yaman, Z. H.: On weak ideal convergence in normed spaces. J. Interdiscip. Math. 13 (2010), 153-162. | DOI | MR | Zbl
[32] Šalát, T., Tripathy, B. C., Ziman, M.: On some properties of ${\mathcal I}$-convergence. Tatra Mt. Math. Publ. 28 (2004), 274-286. | MR
[33] Šalát, T., Tripathy, B. C., Ziman, M.: On ${\mathcal I}$-convergence field. Ital. J. Pure Appl. Math. 17 (2005), 45-54. | MR
[34] Swartz, C.: The Nikodým boundedness theorem for lattice-valued measures. Arch. Math. 53 (1989), 390-393. | DOI | MR | Zbl
[35] Tripathy, B., Tripathy, B. C.: On $I$-convergent double sequences. Soochow J. Math. 31 (2005), 549-560. | MR | Zbl
Cité par Sources :