On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1055-1072
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field $\rho $ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field $\rho $ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre' characteristic of such a spacetime.
The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field $\rho $ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field $\rho $ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre' characteristic of such a spacetime.
DOI : 10.1007/s10587-012-0063-0
Classification : 53B15, 53B20, 53B30, 53C15, 53C25
Keywords: pseudo-conformally symmetric manifold; almost pseudo-conformally symmetric manifold; Ricci-recurrent manifold; Einstein field equations; Segre' characteristic
@article{10_1007_s10587_012_0063_0,
     author = {Chand De, Uday and De, Avik},
     title = {On almost pseudo-conformally symmetric {Ricci-recurrent} manifolds with applications to relativity},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1055--1072},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0063-0},
     mrnumber = {3010256},
     zbl = {1274.53049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0063-0/}
}
TY  - JOUR
AU  - Chand De, Uday
AU  - De, Avik
TI  - On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1055
EP  - 1072
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0063-0/
DO  - 10.1007/s10587-012-0063-0
LA  - en
ID  - 10_1007_s10587_012_0063_0
ER  - 
%0 Journal Article
%A Chand De, Uday
%A De, Avik
%T On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity
%J Czechoslovak Mathematical Journal
%D 2012
%P 1055-1072
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0063-0/
%R 10.1007/s10587-012-0063-0
%G en
%F 10_1007_s10587_012_0063_0
Chand De, Uday; De, Avik. On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1055-1072. doi: 10.1007/s10587-012-0063-0

[1] Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature. Tensor, N. S. 18 (1967), 348-354. | MR | Zbl

[2] Boeckx, E., Vanhecke, L., Kowalski, O.: Riemannian Manifolds of Conullity Two. World Scientific Publishing Singapore (1996). | MR | Zbl

[3] Buchner, K., Roter, W.: On conformally quasi-recurrent metrics I. Some general results and existence questions. Soochow J. Math. 19 (1993), 381-400. | MR | Zbl

[4] Cartan, E.: Sur une classe remarquable d'espaces de Riemannian. Bull. S. M. F 54 (1926), 214-264 France. | MR

[5] Chaki, M. C.: On pseudo symmetric manifolds. Ann. Sţiinţ. Univ. ``Al. I. Cuza'' Iaşi 33 (1987), 53-58. | MR | Zbl

[6] Chaki, M. C., Gupta, B.: On conformally symmetric spaces. Indian J. Math. 5 (1963), 113-122. | MR | Zbl

[7] De, U. C., Biswas, H. A.: On pseudo conformally symmetric manifolds. Bull. Calcutta Math. Soc. 85 (1993), 479-486. | MR | Zbl

[8] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds. Ann. Univ. Sci. Budap. 51 (2008), 53-68. | MR | Zbl

[9] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds. Demonstr. Math. 42 (2009), 869-886. | MR | Zbl

[10] De, U. C., Bandyopadhyay, S.: On weakly conformally symmetric spaces. Publ. Math. 57 (2000), 71-78. | MR | Zbl

[11] Derdzinski, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor. J. Geom. Phys. 58 (2008), 1137-1147. | DOI | MR | Zbl

[12] Derdzinski, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor. Ann. Global Anal. Geom. 37 (2010), 73-90. | DOI | MR | Zbl

[13] Derdzinski, A., Roter, W.: Global properties of indefinite metrics with parallel Weyl tensor. Proc. Pure and Applied Differential Geometry, PADGE 2007 Shaker Aachen (2007), 63-72. | MR | Zbl

[14] Derdzinski, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds. Tohoku Math. J. 59 (2007), 566-602. | DOI | MR | Zbl

[15] Derdzinski, A., Roter, W.: The local structure of conformally symmetric manifolds. Bull. Belg. Math. Soc. -- Simon Stevin 16 (2009), 117-128. | DOI | MR | Zbl

[16] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Soc. Sér. A 44 (1992), 1-34. | MR | Zbl

[17] Eisenhart, L. P.: Riemannian Geometry. Princeton University Press Princeton (1967). | MR | Zbl

[18] O'Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity. Academic Press New York-London (1983). | MR | Zbl

[19] Patterson, E. M.: Some theorems on Ricci-recurrent spaces. J. Lond. Math. Soc. 27 (1952), 287-295. | DOI | MR | Zbl

[20] Petersen, P.: Riemannian Geometry. Springer New York (2006). | MR | Zbl

[21] Petrov, A. Z.: Einstein Spaces. Pergamon Press Oxford (1969). | MR | Zbl

[22] Prvanović, M.: Some theorems on conformally quasi-recurrent manifolds. Fak. Univ. u Novom Sadu, Zb. Rad. Prir.-Mat., Ser. Mat. 19 (1989), 21-31. | MR

[23] Roter, W.: On conformally symmetric Ricci-recurrent spaces. Colloq. Math. 31 (1974), 87-96. | DOI | MR | Zbl

[24] Roter, W.: On the existence of conformally recurrent Ricci-recurrent spaces. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24 (1976), 973-979. | MR

[25] Roter, W.: Some remarks on infinitesimal projective transformations in recurrent and Ricci-recurrent spaces. Colloq. Math. 15 (1966), 121-127. | DOI | MR | Zbl

[26] Schouten, J. A.: Ricci Calculus. An Introduction to Tensor Analysis and Its Geometrical Application. 2nd ed. Springer Berlin (1954). | MR

[27] Sen, R. N., Chaki, M. C.: On curvature restrictions of a certain kind of conformally-flat Riemannian space of class one. Proc. Natl. Inst. Sci. India, Part A 33 (1967), 100-102. | MR | Zbl

[28] Suh, Y. J., Kwon, J.-H., Hae, Y. Y.: Conformally symmetric semi-Riemannian manifolds. J. Geom. Phys. 56 (2006), 875-901. | DOI | MR

[29] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R=0$. The local version. J. Differ. Geom. 17 (1982), 531-582. | DOI | MR

[30] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projectively symmetric Riemannian manifolds. Colloq. János Bolyai Math. Soc. 56 (1989), 663-670. | MR

[31] Walker, A. G.: On Ruse's space of recurrent curvature. Proc. London Math. Soc., II. Sér. 52 (1951), 36-64.

[32] Watanabe, Y.: Integral inequalities in a compact orientable manifold, Riemannian or Kählerian. Kōdai Math. Semin. Rep. 20 (1968), 264-271. | DOI | MR | Zbl

[33] Yano, K.: Integral Formulas in Riemannian Geometry. Marcel Dekker New York (1970). | MR | Zbl

Cité par Sources :