Keywords: functional differential equation; boundary value problem; differential inequality; solution set
@article{10_1007_s10587_012_0062_1,
author = {Domoshnitsky, Alexander and Hakl, Robert and P\r{u}\v{z}a, Bed\v{r}ich},
title = {On the dimension of the solution set to the homogeneous linear functional differential equation of the first order},
journal = {Czechoslovak Mathematical Journal},
pages = {1033--1053},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0062-1},
mrnumber = {3010255},
zbl = {1274.34184},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/}
}
TY - JOUR AU - Domoshnitsky, Alexander AU - Hakl, Robert AU - Půža, Bedřich TI - On the dimension of the solution set to the homogeneous linear functional differential equation of the first order JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1033 EP - 1053 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/ DO - 10.1007/s10587-012-0062-1 LA - en ID - 10_1007_s10587_012_0062_1 ER -
%0 Journal Article %A Domoshnitsky, Alexander %A Hakl, Robert %A Půža, Bedřich %T On the dimension of the solution set to the homogeneous linear functional differential equation of the first order %J Czechoslovak Mathematical Journal %D 2012 %P 1033-1053 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/ %R 10.1007/s10587-012-0062-1 %G en %F 10_1007_s10587_012_0062_1
Domoshnitsky, Alexander; Hakl, Robert; Půža, Bedřich. On the dimension of the solution set to the homogeneous linear functional differential equation of the first order. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1033-1053. doi: 10.1007/s10587-012-0062-1
[1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of Functional-Differential Equations. Russian. English summary Moskva: Nauka (1991). | MR | Zbl
[2] Bravyi, E., Hakl, R., Lomtatidze, A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czech. Math. J. 52 (2002), 513-530. | DOI | MR | Zbl
[3] Domoshnitsky, A.: Maximum principles and nonoscillation intervals for first order Volterra functional differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-813. | MR
[4] Domoshnitsky, A., Maghakyan, A., Shklyar, R.: Maximum principles and boundary value problems for first-order neutral functional differential equations. J. Inequal. Appl. (2009), 26 pp. Article ID 141959 | MR | Zbl
[5] Hakl, R., Lomtatidze, A., Půža, B.: On nonnegative solutions of first order scalar functional differential equations. Mem. Differ. Equ. Math. Phys. 23 (2001), 51-84. | MR | Zbl
[6] Hakl, R., Lomtatidze, A., Stavroulakis, I. P.: On a boundary value problem for scalar linear functional differential equations. Abstr. Appl. Anal. (2004), 45-67. | DOI | MR | Zbl
[7] Hakl, R., Lomtatidze, A., Šremr, J.: Some Boundary Value Problems for First Order Scalar Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 10. Brno: Masaryk University (2002). | MR | Zbl
[8] Lomtatidze, A., Opluštil, Z.: On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. Paper No. 16, 21 pp (2003). | MR | Zbl
[9] Lomtatidze, A., Opluštil, Z., Šremr, J.: Nonpositive solutions to a certain functional differential inequality. Nonlinear Oscil. (N. Y.) 12 (2009), 474-509 | DOI | MR
[10] Lomtatidze, A., Opluštil, Z., Šremr, J.: On a nonlocal boundary value problem for first order linear functional differential equations. Mem. Differ. Equ. Math. Phys. 41 (2007), 69-85. | MR | Zbl
[11] Lomtatidze, A., Opluštil, Z., Šremr, J.: Solvability conditions for a nonlocal boundary value problem for linear functional differential equations. Fasc. Math. 41 (2009), 81-96. | MR | Zbl
[12] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional differential equations. Nonlin. Osc. 11 (2008), 384-406 | DOI | MR
[13] Opluštil, Z., Šremr, J.: On a non-local boundary value problem for linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. (2009), Paper No. 36, 13 pp. | MR | Zbl
[14] Rontó, A., Pylypenko, V., Dilna, D.: On the unique solvability of a non-local boundary value problem for linear functional differential equations. Math. Model. Anal. 13 (2008), 241-250. | DOI | MR | Zbl
Cité par Sources :