On the dimension of the solution set to the homogeneous linear functional differential equation of the first order
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1033-1053
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Consider the homogeneous equation $$ u'(t)=\ell (u)(t)\qquad \mbox {for a.e. } t\in [a,b] $$ where $\ell \colon C([a,b];\Bbb R)\to L([a,b];\Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
Consider the homogeneous equation $$ u'(t)=\ell (u)(t)\qquad \mbox {for a.e. } t\in [a,b] $$ where $\ell \colon C([a,b];\Bbb R)\to L([a,b];\Bbb R)$ is a linear bounded operator. The efficient conditions guaranteeing that the solution set to the equation considered is one-dimensional, generated by a positive monotone function, are established. The results obtained are applied to get new efficient conditions sufficient for the solvability of a class of boundary value problems for first order linear functional differential equations.
DOI : 10.1007/s10587-012-0062-1
Classification : 34K06, 34K10
Keywords: functional differential equation; boundary value problem; differential inequality; solution set
@article{10_1007_s10587_012_0062_1,
     author = {Domoshnitsky, Alexander and Hakl, Robert and P\r{u}\v{z}a, Bed\v{r}ich},
     title = {On the dimension of the solution set to the homogeneous linear functional differential equation of the first order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1033--1053},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0062-1},
     mrnumber = {3010255},
     zbl = {1274.34184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/}
}
TY  - JOUR
AU  - Domoshnitsky, Alexander
AU  - Hakl, Robert
AU  - Půža, Bedřich
TI  - On the dimension of the solution set to the homogeneous linear functional differential equation of the first order
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1033
EP  - 1053
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/
DO  - 10.1007/s10587-012-0062-1
LA  - en
ID  - 10_1007_s10587_012_0062_1
ER  - 
%0 Journal Article
%A Domoshnitsky, Alexander
%A Hakl, Robert
%A Půža, Bedřich
%T On the dimension of the solution set to the homogeneous linear functional differential equation of the first order
%J Czechoslovak Mathematical Journal
%D 2012
%P 1033-1053
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0062-1/
%R 10.1007/s10587-012-0062-1
%G en
%F 10_1007_s10587_012_0062_1
Domoshnitsky, Alexander; Hakl, Robert; Půža, Bedřich. On the dimension of the solution set to the homogeneous linear functional differential equation of the first order. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1033-1053. doi: 10.1007/s10587-012-0062-1

[1] Azbelev, N. V., Maksimov, V. P., Rakhmatullina, L. F.: Introduction to the Theory of Functional-Differential Equations. Russian. English summary Moskva: Nauka (1991). | MR | Zbl

[2] Bravyi, E., Hakl, R., Lomtatidze, A.: Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations. Czech. Math. J. 52 (2002), 513-530. | DOI | MR | Zbl

[3] Domoshnitsky, A.: Maximum principles and nonoscillation intervals for first order Volterra functional differential equations. Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-813. | MR

[4] Domoshnitsky, A., Maghakyan, A., Shklyar, R.: Maximum principles and boundary value problems for first-order neutral functional differential equations. J. Inequal. Appl. (2009), 26 pp. Article ID 141959 | MR | Zbl

[5] Hakl, R., Lomtatidze, A., Půža, B.: On nonnegative solutions of first order scalar functional differential equations. Mem. Differ. Equ. Math. Phys. 23 (2001), 51-84. | MR | Zbl

[6] Hakl, R., Lomtatidze, A., Stavroulakis, I. P.: On a boundary value problem for scalar linear functional differential equations. Abstr. Appl. Anal. (2004), 45-67. | DOI | MR | Zbl

[7] Hakl, R., Lomtatidze, A., Šremr, J.: Some Boundary Value Problems for First Order Scalar Functional Differential Equations. Folia Facultatis Scientiarum Naturalium Universitatis Masarykianae Brunensis. Mathematica 10. Brno: Masaryk University (2002). | MR | Zbl

[8] Lomtatidze, A., Opluštil, Z.: On nonnegative solutions of a certain boundary value problem for first order linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. Paper No. 16, 21 pp (2003). | MR | Zbl

[9] Lomtatidze, A., Opluštil, Z., Šremr, J.: Nonpositive solutions to a certain functional differential inequality. Nonlinear Oscil. (N. Y.) 12 (2009), 474-509 | DOI | MR

[10] Lomtatidze, A., Opluštil, Z., Šremr, J.: On a nonlocal boundary value problem for first order linear functional differential equations. Mem. Differ. Equ. Math. Phys. 41 (2007), 69-85. | MR | Zbl

[11] Lomtatidze, A., Opluštil, Z., Šremr, J.: Solvability conditions for a nonlocal boundary value problem for linear functional differential equations. Fasc. Math. 41 (2009), 81-96. | MR | Zbl

[12] Opluštil, Z.: New solvability conditions for a non-local boundary value problem for nonlinear functional differential equations. Nonlin. Osc. 11 (2008), 384-406 | DOI | MR

[13] Opluštil, Z., Šremr, J.: On a non-local boundary value problem for linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. (2009), Paper No. 36, 13 pp. | MR | Zbl

[14] Rontó, A., Pylypenko, V., Dilna, D.: On the unique solvability of a non-local boundary value problem for linear functional differential equations. Math. Model. Anal. 13 (2008), 241-250. | DOI | MR | Zbl

Cité par Sources :