Keywords: homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
@article{10_1007_s10587_012_0061_2,
author = {Kope\v{c}ek, Old\v{r}ich},
title = {Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$},
journal = {Czechoslovak Mathematical Journal},
pages = {1011--1032},
year = {2012},
volume = {62},
number = {4},
doi = {10.1007/s10587-012-0061-2},
mrnumber = {3010254},
zbl = {1274.08022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/}
}
TY - JOUR AU - Kopeček, Oldřich TI - Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1011 EP - 1032 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ DO - 10.1007/s10587-012-0061-2 LA - en ID - 10_1007_s10587_012_0061_2 ER -
%0 Journal Article %A Kopeček, Oldřich %T Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ %J Czechoslovak Mathematical Journal %D 2012 %P 1011-1032 %V 62 %N 4 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ %R 10.1007/s10587-012-0061-2 %G en %F 10_1007_s10587_012_0061_2
Kopeček, Oldřich. Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032. doi: 10.1007/s10587-012-0061-2
[1] Baštinec, J., Chvalina, J., Novotná, J., Novák, M.: On a group of normed quadratic functions and solving certain centralizer functional equations I. In Proceedings of 7th International Conference APLIMAT 2008, Bratislava: FME STU (2008), 73-80.
[2] Baštinec, J., Chvalina, J., Novotná, J., Novák, M.: On a group of normed quadratic functions and solving certain centralizer functional equations II. J. Appl. Math. (2008), 19-27.
[3] Baštinec, J., Chvalina, J., Novák, M.: Solving certain centralizer functional equations of one variable with quadratic kernels. 6th International Conference APLIMAT 2007, Bratislava: FME STU (2008), 71-78.
[4] Binterová, H., Chvalina, J., Chvalinová, L.: Discrete quadratic dynamical systems a conjugacy of their generating functions. 3th International Conference APLIMAT 2004, Bratislava: FME STU (2004), 283-288.
[5] Chvalina, J.: Functional Graphs, Quasiordered Sets and Commutative Hypergroups. Masarykova univerzita, Brno (1995), Czech.
[6] Chvalina, J., Chvalinová, L., Fuchs, E.: Discrete analysis of a certain parametrized family of quadratic functions based on conjugacy of those, Mathematics Education In 21st Century Project. Proceedings of the International Conference ``The Decidable and Undecidable in Mathematical Education'' Masaryk Univerzity Brno, The Hong Kong Institute of Education (2003), 5-10. | MR
[7] Chvalina, J., Svoboda, Z.: On the solution of the system of certain centralizer functional equations with order isomorphismus of intervals in the role of kernels. In Proceedings of contributions of 5th. Didactic Conference in Žilina, University of Žilina (2008), 1-6 Czech.
[8] Chvalina, J., Moučka, J., Svoboda, Z.: Sandwich semigroups of solutions of certain functional equations of one variable. 7. Matematický workshop s mezinárodní '{u}častí FAST VU v Brně, 16. říjen 2008 (2008), 1-9. | MR
[9] Chvalina, J., Svoboda, Z.: Sandwich semigroups of solutions of certain functional equations and hyperstructures determinated by sandwiches of functions. J. Appl. Math., Aplimat 2009 2 (1) 35-44.
[10] Kopeček, O.: Homomorphisms of partial unary algebras. Czech. Math. J. 26 (1976), 108-127. | MR | Zbl
[11] Kopeček, O.: The category of connected partial unary algebras. Czech. Math. J. 27 (1977), 415-423. | MR | Zbl
[12] Kopeček, O.: The categories of connected partial and complete unary algebras. Bull. Acad. Pol. Sci., Sér. Sci. Math. 27 (1979), 337-344. | MR | Zbl
[13] Kopeček, O.: $| End A| = | Con A| = | Sub A| = 2^{|A|}$ for any uncountable 1-unary algebra $A$. Algebra Univers. 16 (1983), 312-317. | MR | Zbl
[14] Neuman, F.: On transformations of differential equations and systems with deviating argument. Czech. Math. J. 31 (1981), 87-96. | MR | Zbl
[15] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czech. Math. J. 32 (1982), 488-494. | MR | Zbl
[16] Neuman, F.: Transformations and canonical forms of functional-differential equations. Proc. R. Soc. Edinb., Sect. A 115 (1990), 349-357. | MR
[17] Novotný, M.: Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math., Brno 26 (1990), 155-164. | MR | Zbl
Cité par Sources :