Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate functional equations $f(p(x)) = q(f(x))$ where $p$ and $q$ are given real functions defined on the set ${\Bbb R}$ of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions $p, q$ which are strictly increasing and continuous on ${\Bbb R}$. In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction of any solution of this equation if some exists. This construction is demonstrated in detail and discussed by means of an example.
DOI :
10.1007/s10587-012-0061-2
Classification :
08A60, 65Q20, 97I70
Keywords: homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
Keywords: homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
@article{10_1007_s10587_012_0061_2,
author = {Kope\v{c}ek, Old\v{r}ich},
title = {Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$},
journal = {Czechoslovak Mathematical Journal},
pages = {1011--1032},
publisher = {mathdoc},
volume = {62},
number = {4},
year = {2012},
doi = {10.1007/s10587-012-0061-2},
mrnumber = {3010254},
zbl = {1274.08022},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/}
}
TY - JOUR AU - Kopeček, Oldřich TI - Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1011 EP - 1032 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ DO - 10.1007/s10587-012-0061-2 LA - en ID - 10_1007_s10587_012_0061_2 ER -
%0 Journal Article %A Kopeček, Oldřich %T Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$ %J Czechoslovak Mathematical Journal %D 2012 %P 1011-1032 %V 62 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/ %R 10.1007/s10587-012-0061-2 %G en %F 10_1007_s10587_012_0061_2
Kopeček, Oldřich. Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032. doi: 10.1007/s10587-012-0061-2
Cité par Sources :