Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate functional equations $f(p(x)) = q(f(x))$ where $p$ and $q$ are given real functions defined on the set ${\Bbb R}$ of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions $p, q$ which are strictly increasing and continuous on ${\Bbb R}$. In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction of any solution of this equation if some exists. This construction is demonstrated in detail and discussed by means of an example.
We investigate functional equations $f(p(x)) = q(f(x))$ where $p$ and $q$ are given real functions defined on the set ${\Bbb R}$ of all real numbers. For these investigations, we can use methods for constructions of homomorphisms of mono-unary algebras. Our considerations will be confined to functions $p, q$ which are strictly increasing and continuous on ${\Bbb R}$. In this case, there is a simple characterization for the existence of a solution of the above equation. First, we give such a characterization. Further, we present a construction of any solution of this equation if some exists. This construction is demonstrated in detail and discussed by means of an example.
DOI : 10.1007/s10587-012-0061-2
Classification : 08A60, 65Q20, 97I70
Keywords: homomorphism of mono-unary algebras; functional equation; strictly increasing continuous real functions
@article{10_1007_s10587_012_0061_2,
     author = {Kope\v{c}ek, Old\v{r}ich},
     title = {Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1011--1032},
     year = {2012},
     volume = {62},
     number = {4},
     doi = {10.1007/s10587-012-0061-2},
     mrnumber = {3010254},
     zbl = {1274.08022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/}
}
TY  - JOUR
AU  - Kopeček, Oldřich
TI  - Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 1011
EP  - 1032
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/
DO  - 10.1007/s10587-012-0061-2
LA  - en
ID  - 10_1007_s10587_012_0061_2
ER  - 
%0 Journal Article
%A Kopeček, Oldřich
%T Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$
%J Czechoslovak Mathematical Journal
%D 2012
%P 1011-1032
%V 62
%N 4
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0061-2/
%R 10.1007/s10587-012-0061-2
%G en
%F 10_1007_s10587_012_0061_2
Kopeček, Oldřich. Equation $f(p(x)) = q(f(x))$ for given real functions $p$, $q$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1011-1032. doi: 10.1007/s10587-012-0061-2

[1] Baštinec, J., Chvalina, J., Novotná, J., Novák, M.: On a group of normed quadratic functions and solving certain centralizer functional equations I. In Proceedings of 7th International Conference APLIMAT 2008, Bratislava: FME STU (2008), 73-80.

[2] Baštinec, J., Chvalina, J., Novotná, J., Novák, M.: On a group of normed quadratic functions and solving certain centralizer functional equations II. J. Appl. Math. (2008), 19-27.

[3] Baštinec, J., Chvalina, J., Novák, M.: Solving certain centralizer functional equations of one variable with quadratic kernels. 6th International Conference APLIMAT 2007, Bratislava: FME STU (2008), 71-78.

[4] Binterová, H., Chvalina, J., Chvalinová, L.: Discrete quadratic dynamical systems a conjugacy of their generating functions. 3th International Conference APLIMAT 2004, Bratislava: FME STU (2004), 283-288.

[5] Chvalina, J.: Functional Graphs, Quasiordered Sets and Commutative Hypergroups. Masarykova univerzita, Brno (1995), Czech.

[6] Chvalina, J., Chvalinová, L., Fuchs, E.: Discrete analysis of a certain parametrized family of quadratic functions based on conjugacy of those, Mathematics Education In 21st Century Project. Proceedings of the International Conference ``The Decidable and Undecidable in Mathematical Education'' Masaryk Univerzity Brno, The Hong Kong Institute of Education (2003), 5-10. | MR

[7] Chvalina, J., Svoboda, Z.: On the solution of the system of certain centralizer functional equations with order isomorphismus of intervals in the role of kernels. In Proceedings of contributions of 5th. Didactic Conference in Žilina, University of Žilina (2008), 1-6 Czech.

[8] Chvalina, J., Moučka, J., Svoboda, Z.: Sandwich semigroups of solutions of certain functional equations of one variable. 7. Matematický workshop s mezinárodní '{u}častí FAST VU v Brně, 16. říjen 2008 (2008), 1-9. | MR

[9] Chvalina, J., Svoboda, Z.: Sandwich semigroups of solutions of certain functional equations and hyperstructures determinated by sandwiches of functions. J. Appl. Math., Aplimat 2009 2 (1) 35-44.

[10] Kopeček, O.: Homomorphisms of partial unary algebras. Czech. Math. J. 26 (1976), 108-127. | MR | Zbl

[11] Kopeček, O.: The category of connected partial unary algebras. Czech. Math. J. 27 (1977), 415-423. | MR | Zbl

[12] Kopeček, O.: The categories of connected partial and complete unary algebras. Bull. Acad. Pol. Sci., Sér. Sci. Math. 27 (1979), 337-344. | MR | Zbl

[13] Kopeček, O.: $| End A| = | Con A| = | Sub A| = 2^{|A|}$ for any uncountable 1-unary algebra $A$. Algebra Univers. 16 (1983), 312-317. | MR | Zbl

[14] Neuman, F.: On transformations of differential equations and systems with deviating argument. Czech. Math. J. 31 (1981), 87-96. | MR | Zbl

[15] Neuman, F.: Simultaneous solutions of a system of Abel equations and differential equations with several deviations. Czech. Math. J. 32 (1982), 488-494. | MR | Zbl

[16] Neuman, F.: Transformations and canonical forms of functional-differential equations. Proc. R. Soc. Edinb., Sect. A 115 (1990), 349-357. | MR

[17] Novotný, M.: Mono-unary algebras in the work of Czechoslovak mathematicians. Arch. Math., Brno 26 (1990), 155-164. | MR | Zbl

Cité par Sources :