Keywords: $M(r, s)$-ideal and $M$-ideal of compact operators; property $M^\ast (r, s)$; compact approximation property
@article{10_1007_s10587_012_0059_9,
author = {Haller, Rainis and Johanson, Marje and Oja, Eve},
title = {$M(r,s)$-ideals of compact operators},
journal = {Czechoslovak Mathematical Journal},
pages = {673--693},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0059-9},
mrnumber = {2984628},
zbl = {1265.46023},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/}
}
TY - JOUR AU - Haller, Rainis AU - Johanson, Marje AU - Oja, Eve TI - $M(r,s)$-ideals of compact operators JO - Czechoslovak Mathematical Journal PY - 2012 SP - 673 EP - 693 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/ DO - 10.1007/s10587-012-0059-9 LA - en ID - 10_1007_s10587_012_0059_9 ER -
%0 Journal Article %A Haller, Rainis %A Johanson, Marje %A Oja, Eve %T $M(r,s)$-ideals of compact operators %J Czechoslovak Mathematical Journal %D 2012 %P 673-693 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/ %R 10.1007/s10587-012-0059-9 %G en %F 10_1007_s10587_012_0059_9
Haller, Rainis; Johanson, Marje; Oja, Eve. $M(r,s)$-ideals of compact operators. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 673-693. doi: 10.1007/s10587-012-0059-9
[1] Ausekle, J., Oja, E.: Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space. Ark. Mat. 36 (1998), 233-239. | DOI | MR | Zbl
[2] Cabello, J. C., Nieto, E.: On properties of $M$-ideals. Rocky Mt. J. Math. 28 (1998), 61-93. | DOI | MR | Zbl
[3] Cabello, J. C., Nieto, E.: An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property. Stud. Math. 129 (1998), 185-196. | DOI | MR | Zbl
[4] Cabello, J. C., Nieto, E.: On $M$-type structures and the fixed point property. Houston J. Math. 26 (2000), 549-560. | MR | Zbl
[5] Cabello, J. C., Nieto, E., Oja, E.: On ideals of compact operators satisfying the $M(r,s)$-inequality. J. Math. Anal. Appl. 220 (1998), 334-348. | DOI | MR | Zbl
[6] Cho, C.-M., Johnson, W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an {$M$}-ideal in $L(X)$. Proc. Am. Math. Soc. 93 (1985), 466-470. | MR
[7] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces. Isr. J. Math. 21 (1975), 38-49. | DOI | MR | Zbl
[8] Godefroy, G., Saphar, P. D.: Duality in spaces of operators and smooth norms on Banach spaces. Ill. J. Math. 32 (1988), 672-695. | DOI | MR | Zbl
[9] Haller, R., Johanson, M., Oja, E.: $M(r,s)$-inequality for $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76. | MR
[10] Haller, R., Oja, E.: Geometric characterizations of positions of Banach spaces in their biduals. Arch. Math. 69 (1997), 227-233. | DOI | MR | Zbl
[11] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547. Springer Berlin (1993). | MR
[12] Heinrich, S.: The reflexivity of the Banach space $L(E,F)$. Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian. | MR | Zbl
[13] Hennefeld, J.: $M$-ideals, $HB$-subspaces, and compact operators. Indiana Univ. Math. J. 28 (1979), 927-934. | DOI | MR | Zbl
[14] John, K., Werner, D.: $M$-ideals of compact operators into $\ell_p$. Czech. Math. J. 50 (125) (2000), 51-57. | DOI | MR | Zbl
[15] Johnson, J.: Remarks on Banach spaces of compact operators. J. Funct. Anal. 32 (1979), 304-311. | DOI | MR | Zbl
[16] Kahre, Ü., Kirikal, L., Oja, E.: On $M$-ideals of compact operators in Lorentz sequence spaces. J. Math. Anal. Appl. 259 (2001), 439-452. | DOI | MR | Zbl
[17] Kalton, N. J.: Spaces of compact operators. Math. Ann. 208 (1974), 267-278. | DOI | MR | Zbl
[18] Kalton, N. J.: Banach spaces for which the ideal of compact operators is an $M$-ideal. C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513. | MR | Zbl
[19] Kalton, N. J.: $M$-ideals of compact operators. Ill. J. Math. 37 (1993), 147-169. | DOI | MR | Zbl
[20] Kalton, N. J., Werner, D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178. | MR | Zbl
[21] Kivisoo, K., Oja, E.: Extension of Simons' inequality. Proc. Am. Math. Soc. 133 (2005), 3485-3496. | DOI | MR | Zbl
[22] Lima, Å.: Property $(wM^\ast)$ and the unconditional metric compact approximation property. Stud. Math. 113 (1995), 249-263. | DOI | MR | Zbl
[23] Lima, Å., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property. Isr. J. Math. 119 (2000), 325-348. | DOI | MR | Zbl
[24] Lima, Å., Oja, E.: Ideals of compact operators. J. Aust. Math. Soc. 77 (2004), 91-110. | DOI | MR | Zbl
[25] Lima, Å., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces. Mich. Math. J. 41 (1994), 473-490. | DOI | MR | Zbl
[26] Nygaard, O., Põldvere, M.: Johnson's projection, Kalton's property $(M^*)$, and $M$-ideals of compact operators. Stud. Math. 195 (2009), 243-255. | DOI | MR | Zbl
[27] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139. | MR
[28] Oja, E.: Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French. | MR | Zbl
[29] Oja, E.: Extensions of Functionals and the Structure of the Space of Continuous Linear Operators. Tartu Univ. Publ. Tartu (1991), Russian. | MR
[30] Oja, E.: On $M$-ideals of compact operators and Lorentz sequence spaces. Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36. | MR | Zbl
[31] Oja, E.: A note on $M$-ideals of compact operators. Tartu Ülikooli Toimetised 960 (1993), 75-92. | MR | Zbl
[32] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces. Mathematika 44 (1997), 120-132. | DOI | MR | Zbl
[33] Oja, E.: $M$-ideals of compact operators are separably determined. Proc. Am. Math. Soc. 126 (1998), 2747-2753. | DOI | MR | Zbl
[34] Oja, E.: Géométrie des espaces de Banach ayant des approximations de l'identité contractantes. C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 1167-1170 French. | DOI | MR | Zbl
[35] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity. Trans. Am. Math. Soc. 352 (2000), 2801-2823. | DOI | MR | Zbl
[36] Oja, E., Põldvere, M.: On subspaces of Banach spaces where every functional has a unique norm-preserving extension. Stud. Math. 117 (1996), 289-306. | MR | Zbl
[37] Oja, E., Põldvere, M.: Intersection properties of ball sequences and uniqueness of Hahn-Banach extensions. Proc. R. Soc. Edinb., Sect. A 129 (1999), 1251-1262. | DOI | MR | Zbl
[38] Oja, E., Zolk, I.: On commuting approximation properties of Banach spaces. Proc. R. Soc. Edinb., Sect. A 139 (2009), 551-565. | DOI | MR | Zbl
[39] Põldvere, M.: Phelps' uniqueness property for $K(X,Y)$ in $L(X,Y)$. Rocky Mt. J. Math. 36 (2006), 1651-1663. | DOI | MR
[40] Werner, D.: $M$-ideals and the ``basic inequality''. J. Approximation Theory 76 (1994), 21-30. | DOI | MR | Zbl
Cité par Sources :