$M(r,s)$-ideals of compact operators
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 673-693
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal K(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal L(X,Y)$ whenever $\mathcal K(X,X)$ and $\mathcal K(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal L(X,X)$ and $\mathcal L(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals.
We study the position of compact operators in the space of all continuous linear operators and its subspaces in terms of ideals. One of our main results states that for Banach spaces $X$ and $Y$ the subspace of all compact operators $\mathcal K(X,Y)$ is an $M(r_1 r_2, s_1 s_2)$-ideal in the space of all continuous linear operators $\mathcal L(X,Y)$ whenever $\mathcal K(X,X)$ and $\mathcal K(Y,Y)$ are $M(r_1,s_1)$- and $M(r_2,s_2)$-ideals in $\mathcal L(X,X)$ and $\mathcal L(Y,Y)$, respectively, with $r_1+s_1/2>1$ and $r_2+s_2/2>1$. We also prove that the $M(r,s)$-ideal $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$ is separably determined. Among others, our results complete and improve some well-known results on $M$-ideals.
DOI : 10.1007/s10587-012-0059-9
Classification : 46B04, 46B20, 46B28, 47L05
Keywords: $M(r, s)$-ideal and $M$-ideal of compact operators; property $M^\ast (r, s)$; compact approximation property
@article{10_1007_s10587_012_0059_9,
     author = {Haller, Rainis and Johanson, Marje and Oja, Eve},
     title = {$M(r,s)$-ideals of compact operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {673--693},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0059-9},
     mrnumber = {2984628},
     zbl = {1265.46023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/}
}
TY  - JOUR
AU  - Haller, Rainis
AU  - Johanson, Marje
AU  - Oja, Eve
TI  - $M(r,s)$-ideals of compact operators
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 673
EP  - 693
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/
DO  - 10.1007/s10587-012-0059-9
LA  - en
ID  - 10_1007_s10587_012_0059_9
ER  - 
%0 Journal Article
%A Haller, Rainis
%A Johanson, Marje
%A Oja, Eve
%T $M(r,s)$-ideals of compact operators
%J Czechoslovak Mathematical Journal
%D 2012
%P 673-693
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0059-9/
%R 10.1007/s10587-012-0059-9
%G en
%F 10_1007_s10587_012_0059_9
Haller, Rainis; Johanson, Marje; Oja, Eve. $M(r,s)$-ideals of compact operators. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 673-693. doi: 10.1007/s10587-012-0059-9

[1] Ausekle, J., Oja, E.: Compactness of operators acting from a Lorentz sequence space to an Orlicz sequence space. Ark. Mat. 36 (1998), 233-239. | DOI | MR | Zbl

[2] Cabello, J. C., Nieto, E.: On properties of $M$-ideals. Rocky Mt. J. Math. 28 (1998), 61-93. | DOI | MR | Zbl

[3] Cabello, J. C., Nieto, E.: An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property. Stud. Math. 129 (1998), 185-196. | DOI | MR | Zbl

[4] Cabello, J. C., Nieto, E.: On $M$-type structures and the fixed point property. Houston J. Math. 26 (2000), 549-560. | MR | Zbl

[5] Cabello, J. C., Nieto, E., Oja, E.: On ideals of compact operators satisfying the $M(r,s)$-inequality. J. Math. Anal. Appl. 220 (1998), 334-348. | DOI | MR | Zbl

[6] Cho, C.-M., Johnson, W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an {$M$}-ideal in $L(X)$. Proc. Am. Math. Soc. 93 (1985), 466-470. | MR

[7] Feder, M., Saphar, P.: Spaces of compact operators and their dual spaces. Isr. J. Math. 21 (1975), 38-49. | DOI | MR | Zbl

[8] Godefroy, G., Saphar, P. D.: Duality in spaces of operators and smooth norms on Banach spaces. Ill. J. Math. 32 (1988), 672-695. | DOI | MR | Zbl

[9] Haller, R., Johanson, M., Oja, E.: $M(r,s)$-inequality for $\mathcal K(X,Y)$ in $\mathcal L(X,Y)$. Acta Comment. Univ. Tartu. Math. 11 (2007), 69-76. | MR

[10] Haller, R., Oja, E.: Geometric characterizations of positions of Banach spaces in their biduals. Arch. Math. 69 (1997), 227-233. | DOI | MR | Zbl

[11] Harmand, P., Werner, D., Werner, W.: $M$-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Mathematics, Vol. 1547. Springer Berlin (1993). | MR

[12] Heinrich, S.: The reflexivity of the Banach space $L(E,F)$. Funkcional. Anal. i Prilož. 8 (1974), 97-98 Russian. | MR | Zbl

[13] Hennefeld, J.: $M$-ideals, $HB$-subspaces, and compact operators. Indiana Univ. Math. J. 28 (1979), 927-934. | DOI | MR | Zbl

[14] John, K., Werner, D.: $M$-ideals of compact operators into $\ell_p$. Czech. Math. J. 50 (125) (2000), 51-57. | DOI | MR | Zbl

[15] Johnson, J.: Remarks on Banach spaces of compact operators. J. Funct. Anal. 32 (1979), 304-311. | DOI | MR | Zbl

[16] Kahre, Ü., Kirikal, L., Oja, E.: On $M$-ideals of compact operators in Lorentz sequence spaces. J. Math. Anal. Appl. 259 (2001), 439-452. | DOI | MR | Zbl

[17] Kalton, N. J.: Spaces of compact operators. Math. Ann. 208 (1974), 267-278. | DOI | MR | Zbl

[18] Kalton, N. J.: Banach spaces for which the ideal of compact operators is an $M$-ideal. C. R. Acad. Sci. Paris, Sér. I Math. 313 (1991), 509-513. | MR | Zbl

[19] Kalton, N. J.: $M$-ideals of compact operators. Ill. J. Math. 37 (1993), 147-169. | DOI | MR | Zbl

[20] Kalton, N. J., Werner, D.: Property $(M)$, $M$-ideals, and almost isometric structure of Banach spaces. J. Reine Angew. Math. 461 (1995), 137-178. | MR | Zbl

[21] Kivisoo, K., Oja, E.: Extension of Simons' inequality. Proc. Am. Math. Soc. 133 (2005), 3485-3496. | DOI | MR | Zbl

[22] Lima, Å.: Property $(wM^\ast)$ and the unconditional metric compact approximation property. Stud. Math. 113 (1995), 249-263. | DOI | MR | Zbl

[23] Lima, Å., Nygaard, O., Oja, E.: Isometric factorization of weakly compact operators and the approximation property. Isr. J. Math. 119 (2000), 325-348. | DOI | MR | Zbl

[24] Lima, Å., Oja, E.: Ideals of compact operators. J. Aust. Math. Soc. 77 (2004), 91-110. | DOI | MR | Zbl

[25] Lima, Å., Oja, E., Rao, T. S. S. R. K., Werner, D.: Geometry of operator spaces. Mich. Math. J. 41 (1994), 473-490. | DOI | MR | Zbl

[26] Nygaard, O., Põldvere, M.: Johnson's projection, Kalton's property $(M^*)$, and $M$-ideals of compact operators. Stud. Math. 195 (2009), 243-255. | DOI | MR | Zbl

[27] Oja, E.: Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem. Mat. Zametki 43 (1988), 237-246, 302 Russian translation in Math. Notes 43 (1988), 134-139. | MR

[28] Oja, E.: Dual de l'espace des opérateurs linéaires continus. C. R. Acad. Sci. Paris, Sér. I Math. 309 (1989), 983-986 French. | MR | Zbl

[29] Oja, E.: Extensions of Functionals and the Structure of the Space of Continuous Linear Operators. Tartu Univ. Publ. Tartu (1991), Russian. | MR

[30] Oja, E.: On $M$-ideals of compact operators and Lorentz sequence spaces. Eesti Tead. Akad. Toim., Füüs. Mat. 40 (1991), 31-36. | MR | Zbl

[31] Oja, E.: A note on $M$-ideals of compact operators. Tartu Ülikooli Toimetised 960 (1993), 75-92. | MR | Zbl

[32] Oja, E.: $HB$-subspaces and Godun sets of subspaces in Banach spaces. Mathematika 44 (1997), 120-132. | DOI | MR | Zbl

[33] Oja, E.: $M$-ideals of compact operators are separably determined. Proc. Am. Math. Soc. 126 (1998), 2747-2753. | DOI | MR | Zbl

[34] Oja, E.: Géométrie des espaces de Banach ayant des approximations de l'identité contractantes. C. R. Acad. Sci. Paris, Sér. I Math. 328 (1999), 1167-1170 French. | DOI | MR | Zbl

[35] Oja, E.: Geometry of Banach spaces having shrinking approximations of the identity. Trans. Am. Math. Soc. 352 (2000), 2801-2823. | DOI | MR | Zbl

[36] Oja, E., Põldvere, M.: On subspaces of Banach spaces where every functional has a unique norm-preserving extension. Stud. Math. 117 (1996), 289-306. | MR | Zbl

[37] Oja, E., Põldvere, M.: Intersection properties of ball sequences and uniqueness of Hahn-Banach extensions. Proc. R. Soc. Edinb., Sect. A 129 (1999), 1251-1262. | DOI | MR | Zbl

[38] Oja, E., Zolk, I.: On commuting approximation properties of Banach spaces. Proc. R. Soc. Edinb., Sect. A 139 (2009), 551-565. | DOI | MR | Zbl

[39] Põldvere, M.: Phelps' uniqueness property for $K(X,Y)$ in $L(X,Y)$. Rocky Mt. J. Math. 36 (2006), 1651-1663. | DOI | MR

[40] Werner, D.: $M$-ideals and the ``basic inequality''. J. Approximation Theory 76 (1994), 21-30. | DOI | MR | Zbl

Cité par Sources :