$k$-torsionless modules with finite Gorenstein dimension
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
Let $R$ be a commutative Noetherian ring. It is shown that the finitely generated $R$-module $M$ with finite Gorenstein dimension is reflexive if and only if $M_{\mathfrak p}$ is reflexive for ${\mathfrak p} \in {\rm Spec}(R) $ with ${\rm depth}(R_{\mathfrak p}) \leq 1$, and ${\mbox {G-{\rm dim}}}_{R_{\mathfrak p}} (M_{\mathfrak p}) \leq {\rm depth}(R_{\mathfrak p})-2 $ for ${\mathfrak p}\in {\rm Spec} (R) $ with ${\rm depth}(R_{\mathfrak p})\geq 2 $. This gives a generalization of Serre and Samuel's results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for $n\geq 2$ we give a characterization of $n$-Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown that every $R$-module has a $k$-torsionless cover provided $R$ is a $k$-Gorenstein ring.
DOI : 10.1007/s10587-012-0058-x
Classification : 13C13, 13C15, 13D05
Keywords: torsionless module; reflexive module; Gorenstein dimension
@article{10_1007_s10587_012_0058_x,
     author = {Salimi, Maryam and Tavasoli, Elham and Yassemi, Siamak},
     title = {$k$-torsionless modules with finite {Gorenstein} dimension},
     journal = {Czechoslovak Mathematical Journal},
     pages = {663--672},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0058-x},
     mrnumber = {2984627},
     zbl = {1265.13013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/}
}
TY  - JOUR
AU  - Salimi, Maryam
AU  - Tavasoli, Elham
AU  - Yassemi, Siamak
TI  - $k$-torsionless modules with finite Gorenstein dimension
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 663
EP  - 672
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/
DO  - 10.1007/s10587-012-0058-x
LA  - en
ID  - 10_1007_s10587_012_0058_x
ER  - 
%0 Journal Article
%A Salimi, Maryam
%A Tavasoli, Elham
%A Yassemi, Siamak
%T $k$-torsionless modules with finite Gorenstein dimension
%J Czechoslovak Mathematical Journal
%D 2012
%P 663-672
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/
%R 10.1007/s10587-012-0058-x
%G en
%F 10_1007_s10587_012_0058_x
Salimi, Maryam; Tavasoli, Elham; Yassemi, Siamak. $k$-torsionless modules with finite Gorenstein dimension. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672. doi: 10.1007/s10587-012-0058-x

[1] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969). | MR | Zbl

[2] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes, I: Commutative rings. Algebra Number Theory 4 (2010), 47-86. | DOI | MR | Zbl

[3] Belshoff, R.: Remarks on reflexive modules, covers, and envelopes. Beitr. Algebra Geom. 50 (2009), 353-362. | MR | Zbl

[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993). | MR | Zbl

[5] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. | DOI | MR | Zbl

[6] Christensen, L. W., Foxby, H. B., Holm, H.: Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions. Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. | MR | Zbl

[7] Enochs, E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). | MR | Zbl

[8] Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor. Math. Ann. 299 (1994), 449-476. | DOI | MR | Zbl

[9] Huneke, C., Wiegand, R.: Correction to ``Tensor products of modules and the rigidity of Tor''. [Math. Ann. 299, 449-476 (1994)]. Math. Ann. 338 (2007), 291-293. | DOI | MR

[10] Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Commun. Algebra 28 (2000), 5783-5811. | DOI | MR | Zbl

[11] Samuel, P.: Anneaux gradués factoriels et modules réflexifs. French Bull. Soc. Math. Fr. 92 (1964), 237-249. | DOI | MR | Zbl

[12] Serre, J.-P.: Classes des corps cyclotomiques. Semin. Bourbaki 11 (1958/59), 11.

[13] Vasconcelos, W.: Reflexive modules over Gorenstein rings. Proc. Am. Math. Soc. 19 (1968), 1349-1355. | DOI | MR | Zbl

Cité par Sources :