Keywords: torsionless module; reflexive module; Gorenstein dimension
@article{10_1007_s10587_012_0058_x,
author = {Salimi, Maryam and Tavasoli, Elham and Yassemi, Siamak},
title = {$k$-torsionless modules with finite {Gorenstein} dimension},
journal = {Czechoslovak Mathematical Journal},
pages = {663--672},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0058-x},
mrnumber = {2984627},
zbl = {1265.13013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/}
}
TY - JOUR AU - Salimi, Maryam AU - Tavasoli, Elham AU - Yassemi, Siamak TI - $k$-torsionless modules with finite Gorenstein dimension JO - Czechoslovak Mathematical Journal PY - 2012 SP - 663 EP - 672 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/ DO - 10.1007/s10587-012-0058-x LA - en ID - 10_1007_s10587_012_0058_x ER -
%0 Journal Article %A Salimi, Maryam %A Tavasoli, Elham %A Yassemi, Siamak %T $k$-torsionless modules with finite Gorenstein dimension %J Czechoslovak Mathematical Journal %D 2012 %P 663-672 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0058-x/ %R 10.1007/s10587-012-0058-x %G en %F 10_1007_s10587_012_0058_x
Salimi, Maryam; Tavasoli, Elham; Yassemi, Siamak. $k$-torsionless modules with finite Gorenstein dimension. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 663-672. doi: 10.1007/s10587-012-0058-x
[1] Auslander, M., Bridger, M.: Stable module theory. Mem. Am. Math. Soc. 94 (1969). | MR | Zbl
[2] Avramov, L. L., Iyengar, S. B., Lipman, J.: Reflexivity and rigidity for complexes, I: Commutative rings. Algebra Number Theory 4 (2010), 47-86. | DOI | MR | Zbl
[3] Belshoff, R.: Remarks on reflexive modules, covers, and envelopes. Beitr. Algebra Geom. 50 (2009), 353-362. | MR | Zbl
[4] Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993). | MR | Zbl
[5] Christensen, L. W., Holm, H.: Ascent properties of Auslander categories. Can. J. Math. 61 (2009), 76-108. | DOI | MR | Zbl
[6] Christensen, L. W., Foxby, H. B., Holm, H.: Beyond Totally Reflexive Modules and Back: A Survey on Gorenstein Dimensions. Marco Fontana, Commutative algebra. Noetherian and non-Noetherian perspectives New York, 2011 101-143. | MR | Zbl
[7] Enochs, E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics. 30. Berlin: Walter de Gruyter. xi (2000). | MR | Zbl
[8] Huneke, C., Wiegand, R.: Tensor products of modules and the rigidity of Tor. Math. Ann. 299 (1994), 449-476. | DOI | MR | Zbl
[9] Huneke, C., Wiegand, R.: Correction to ``Tensor products of modules and the rigidity of Tor''. [Math. Ann. 299, 449-476 (1994)]. Math. Ann. 338 (2007), 291-293. | DOI | MR
[10] Maşek, V.: Gorenstein dimension and torsion of modules over commutative Noetherian rings. Commun. Algebra 28 (2000), 5783-5811. | DOI | MR | Zbl
[11] Samuel, P.: Anneaux gradués factoriels et modules réflexifs. French Bull. Soc. Math. Fr. 92 (1964), 237-249. | DOI | MR | Zbl
[12] Serre, J.-P.: Classes des corps cyclotomiques. Semin. Bourbaki 11 (1958/59), 11.
[13] Vasconcelos, W.: Reflexive modules over Gorenstein rings. Proc. Am. Math. Soc. 19 (1968), 1349-1355. | DOI | MR | Zbl
Cité par Sources :