Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.
For the general modulo $q\geq 3$ and a general multiplicative character $\chi $ modulo $q$, the upper bound estimate of $ |S(m, n, 1, \chi , q)| $ is a very complex and difficult problem. In most cases, the Weil type bound for $ |S(m, n, 1, \chi , q)| $ is valid, but there are some counterexamples. Although the value distribution of $ |S(m, n, 1, \chi , q)| $ is very complicated, it also exhibits many good distribution properties in some number theory problems. The main purpose of this paper is using the estimate for $k$-th Kloosterman sums and analytic method to study the asymptotic properties of the mean square value of Dirichlet $L$-functions weighted by Kloosterman sums, and give an interesting mean value formula for it, which extends the result in reference of W. Zhang, Y. Yi, X. He: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums, Journal of Number Theory, 84 (2000), 199–213.
DOI : 10.1007/s10587-012-0057-y
Classification : 11L05, 11M06, 11M38
Keywords: general $k$-th Kloosterman sum; Dirichlet $L$-function; the mean square value; asymptotic formula
@article{10_1007_s10587_012_0057_y,
     author = {Wang, Tingting},
     title = {Second moments of {Dirichlet} $L$-functions weighted by {Kloosterman} sums},
     journal = {Czechoslovak Mathematical Journal},
     pages = {655--661},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0057-y},
     mrnumber = {2984626},
     zbl = {1265.11086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0057-y/}
}
TY  - JOUR
AU  - Wang, Tingting
TI  - Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 655
EP  - 661
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0057-y/
DO  - 10.1007/s10587-012-0057-y
LA  - en
ID  - 10_1007_s10587_012_0057_y
ER  - 
%0 Journal Article
%A Wang, Tingting
%T Second moments of Dirichlet $L$-functions weighted by Kloosterman sums
%J Czechoslovak Mathematical Journal
%D 2012
%P 655-661
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0057-y/
%R 10.1007/s10587-012-0057-y
%G en
%F 10_1007_s10587_012_0057_y
Wang, Tingting. Second moments of Dirichlet $L$-functions weighted by Kloosterman sums. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 655-661. doi: 10.1007/s10587-012-0057-y

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Springer, New York (1976). | MR | Zbl

[2] Chowla, S.: On Kloosterman's sum. Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. | MR | Zbl

[3] Cochrane, T., Pinner, C.: A further refinement of Mordell's bound on exponential sums. Acta Arith. 116 (2005), 35-41. | DOI | MR | Zbl

[4] Cochrane, T., Zheng, Z.: Exponential sums with rational function entries. Acta Arith. 95 (2000), 67-95. | DOI | MR | Zbl

[5] Cochrane, T., Pinner, C.: Using Stepanov's method for exponential sums involving rational functions. J. Number Theory 116 (2006), 270-292. | DOI | MR | Zbl

[6] Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math. 70 (1982), 219-288. | DOI | MR | Zbl

[7] Estermann, T.: On Kloosterman's sum. Mathematika, Lond. 8 (1961), 83-86. | DOI | MR | Zbl

[8] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publicastions. American Mathematical Society 53. Providence, RI: American Mathematical Society (2004). | MR | Zbl

[9] Malyshev, A. V.: A generalization of Kloosterman sums and their estimates. Russian Vestnik Leningrad Univ. 15 (1960), 59-75. | MR

[10] Weil, A.: On some exponential sums. Proc. Natl. Acad. Sci. USA 34 (1948), 204-207. | DOI | MR | Zbl

[11] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet $L$-functions with the weight of general Kloosterman sums. J. Number Theory 84 (2000), 199-213. | DOI | MR | Zbl

Cité par Sources :