Keywords: exponential diophantine equation; modular approach; arithmetic properties of Lucas numbers
@article{10_1007_s10587_012_0056_z,
author = {Gou, Su and Wang, Tingting},
title = {The diophantine equation $x^2+2^a\cdot 17^b=y^n$},
journal = {Czechoslovak Mathematical Journal},
pages = {645--654},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0056-z},
mrnumber = {2984625},
zbl = {1265.11062},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0056-z/}
}
TY - JOUR AU - Gou, Su AU - Wang, Tingting TI - The diophantine equation $x^2+2^a\cdot 17^b=y^n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 645 EP - 654 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0056-z/ DO - 10.1007/s10587-012-0056-z LA - en ID - 10_1007_s10587_012_0056_z ER -
Gou, Su; Wang, Tingting. The diophantine equation $x^2+2^a\cdot 17^b=y^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 645-654. doi: 10.1007/s10587-012-0056-z
[1] Abouzaid, M.: Lucas and Lehmer numbers without primitive divisor. (Les nombres de Lucas et Lehmer sans diviseur primitif). J. Théor. Nombres Bordx. (2006), 18 299-313. | DOI | MR | Zbl
[2] Bennett, M. A., Skinner, C. M.: Ternary diophantine equations via Galois representations and modular forms. Can. J. Math. (2004), 56 23-54. | MR | Zbl
[3] Beukers, F.: On the generalized Ramanujan-Nagell equation. I. Acta Arith. (1980/81), 38 389-410. | MR
[4] Bilu, Y., Hanrot, G., Voutier, P. M., Mignotte), (M.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. (2001), 539 75-122. | MR
[5] Cangül, I. N., Demirci, M., Luca, F., Pintér, Á., Soydan, G.: On the diophantine equation $x^2+2^a\cdot 11^b=y^n$. Fibonacci Q. (2010), 48 39-46. | MR
[6] Carmichael, R. D.: On the numerical factors of the arithmetic forms $\alpha^n\pm \beta^n$. Ann. of Math. (2) (1913/14), 15 30-48. | MR
[7] Cohn, J. H. E.: The diophantine equations $x^3=Ny^2\pm 1$. Q. J. Math., Oxf. II. Ser. 42 (1991), 27-30. | DOI | MR
[8] Cohn, J. H. E.: The diophantine equation $x^2+2^k=y^n$. Arch. Math. (1992), 59 341-344. | DOI | MR
[9] Le, M.: Some exponential diophantine equations I: The equation $D_1x^2-D_2y^2=\lambda k^z$. J. Number Theory (1995), 55 209-221. | DOI | MR
[10] Le, M.: On Cohn's conjecture concerning the diophantine equation $x^2+2^m=y^n$. Arch. Math. (2002), 78 26-35. | DOI | MR
[11] Ljunggren, W.: Einige Sätze über Unbestimmte Gleichungen von der Form $Ax^4+Bx^2+C =Dy^2$. German Skr. Norske Vid.-Akad., Oslo. I. Math.-Naturvid. Kl. No. 9. Oslo: Jacob Dybwad (1943). | MR
[12] Luca, F.: On the equation $x^2+2^a\cdot 3^b=y^n$. Int. J. Math. Math. Sci. (2002), 29 239-244. | MR
[13] Luca, F., Togbé, A.: On the diophantine equation $x^2+2^a\cdot 5^b=y^n$. Int. J. Number Theory (2008), 4 973-979. | MR
[14] Luca, F., Togbé, A.: On the diophantine equation $x^2+2^\alpha 13^\beta=y^n$. Colloq. Math. (2009), 116 139-146. | MR
[15] Mih$\check{a}$ilescu, P.: Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math. (2004), 572 167-195. | MR
[16] Rabinowicz, S.: The solution of $y^2\pm 2^n=x^3$. Proc. Amer. Math. Soc. (1976), 62 1-6.
[17] Siksek, S.: On the diophantine equation $x^2=y^p+2^kz^p$. J. Théor. Nombres Bordx. (2003), 15 839-846. | DOI | MR | Zbl
[18] Voutier, P. M.: Primitive divisors of Lucas and Lehmer sequences. Math. Comput. (1995), 64 869-888. | DOI | MR | Zbl
Cité par Sources :