On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 625-635
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\leq i\leq m,$ $A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\neq j$. In this paper we study integral operators of the form $$ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y) {\rm d} y, $$ $k_{i}( y) =\sum _{j\in \mathbb Z}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\leq q_{i}\infty ,$ $1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$ $0\leq r1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0$ and $1/{q}=1/{p}-r.$ We also show that we can not expect the $H^{p}$-$H^{q}$ boundedness of this kind of operators.
DOI :
10.1007/s10587-012-0054-1
Classification :
42B20, 42B30
Keywords: integral operator; Hardy space
Keywords: integral operator; Hardy space
@article{10_1007_s10587_012_0054_1,
author = {Rocha, Pablo and Urciuolo, M.},
title = {On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators},
journal = {Czechoslovak Mathematical Journal},
pages = {625--635},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {2012},
doi = {10.1007/s10587-012-0054-1},
mrnumber = {2984623},
zbl = {1265.42046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/}
}
TY - JOUR
AU - Rocha, Pablo
AU - Urciuolo, M.
TI - On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 625
EP - 635
VL - 62
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
DO - 10.1007/s10587-012-0054-1
LA - en
ID - 10_1007_s10587_012_0054_1
ER -
%0 Journal Article
%A Rocha, Pablo
%A Urciuolo, M.
%T On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
%J Czechoslovak Mathematical Journal
%D 2012
%P 625-635
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
%R 10.1007/s10587-012-0054-1
%G en
%F 10_1007_s10587_012_0054_1
Rocha, Pablo; Urciuolo, M. On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 625-635. doi: 10.1007/s10587-012-0054-1
Cité par Sources :