On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 625-635
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\leq i\leq m,$ $A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\neq j$. In this paper we study integral operators of the form $$ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y) {\rm d} y, $$ $k_{i}( y) =\sum _{j\in \mathbb Z}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\leq q_{i}\infty ,$ $1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$ $0\leq r1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0
Let $A_{1},\dots ,A_{m}$ be $n\times n$ real matrices such that for each $1\leq i\leq m,$ $A_{i}$ is invertible and $A_{i}-A_{j}$ is invertible for $i\neq j$. In this paper we study integral operators of the form $$ Tf( x) =\int k_{1}( x-A_{1}y) k_{2}( x-A_{2}y) \dots k_{m}( x-A_{m}y) f( y) {\rm d} y, $$ $k_{i}( y) =\sum _{j\in \mathbb Z}2^{jn/{q_{i}}}\varphi _{i,j}( 2^{j}y) $, $1\leq q_{i}\infty ,$ $1/{q_{1}}+1/{q_{2}}+\dots +1/{q_{m}}=1-r,$ $0\leq r1,$ and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T\colon H^{p}( \mathbb {R} ^{n}) \rightarrow L^{q}( \mathbb {R}^{n}) $ for $ 0$ and $1/{q}=1/{p}-r.$ We also show that we can not expect the $H^{p}$-$H^{q}$ boundedness of this kind of operators.
DOI : 10.1007/s10587-012-0054-1
Classification : 42B20, 42B30
Keywords: integral operator; Hardy space
@article{10_1007_s10587_012_0054_1,
     author = {Rocha, Pablo and Urciuolo, M.},
     title = {On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {625--635},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0054-1},
     mrnumber = {2984623},
     zbl = {1265.42046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/}
}
TY  - JOUR
AU  - Rocha, Pablo
AU  - Urciuolo, M.
TI  - On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 625
EP  - 635
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
DO  - 10.1007/s10587-012-0054-1
LA  - en
ID  - 10_1007_s10587_012_0054_1
ER  - 
%0 Journal Article
%A Rocha, Pablo
%A Urciuolo, M.
%T On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
%J Czechoslovak Mathematical Journal
%D 2012
%P 625-635
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
%R 10.1007/s10587-012-0054-1
%G en
%F 10_1007_s10587_012_0054_1
Rocha, Pablo; Urciuolo, M. On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 625-635. doi: 10.1007/s10587-012-0054-1

[1] Ding, Y., Lu, S.: Boundedness of homogeneous fractional integrals on $L^{p}$ for $N/\alpha \leq p\leq \infty$. Nagoya Math. J. 167 (2002), 17-33. | DOI | MR | Zbl

[2] Gelfand, I. M., Shilov, G. E.: Generalized Functions, Properties and Operations. Vol. 1, Academic Press Inc. (1964). | MR

[3] Godoy, T., Urciuolo, M.: On certain integral operators of fractional type. Acta Math. Hung. 82 (1999), 99-105. | DOI | MR | Zbl

[4] Ricci, F., Sjogren, P.: Two-parameter maximal functions in the Heisenberg group. Math. Z. 199 (1988), 565-575. | DOI | MR

[5] Rocha, P., Urciuolo, M.: On the $H^{p}$-$L^{p}$ boundedness of some integral operators. Georgian Math. J. 18 (2011), 801-808. | DOI | MR | Zbl

[6] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton N. J. (1970). | MR | Zbl

[7] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton N. J. (1993). | MR | Zbl

[8] Stein, E. M., Weiss, G.: On the theory of harmonic functions of several variables I: The theory of $H^{p}$ spaces. Acta Math. 103 (1960), 25-62. | DOI | MR

[9] Taibleson, M. H., Weiss, G.: The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67-151. | MR | Zbl

Cité par Sources :