Keywords: integral operator; Hardy space
@article{10_1007_s10587_012_0054_1,
author = {Rocha, Pablo and Urciuolo, M.},
title = {On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators},
journal = {Czechoslovak Mathematical Journal},
pages = {625--635},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0054-1},
mrnumber = {2984623},
zbl = {1265.42046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/}
}
TY - JOUR
AU - Rocha, Pablo
AU - Urciuolo, M.
TI - On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 625
EP - 635
VL - 62
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
DO - 10.1007/s10587-012-0054-1
LA - en
ID - 10_1007_s10587_012_0054_1
ER -
%0 Journal Article
%A Rocha, Pablo
%A Urciuolo, M.
%T On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators
%J Czechoslovak Mathematical Journal
%D 2012
%P 625-635
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0054-1/
%R 10.1007/s10587-012-0054-1
%G en
%F 10_1007_s10587_012_0054_1
Rocha, Pablo; Urciuolo, M. On the $H^{p}$-$L^{q}$ boundedness of some fractional integral operators. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 625-635. doi: 10.1007/s10587-012-0054-1
[1] Ding, Y., Lu, S.: Boundedness of homogeneous fractional integrals on $L^{p}$ for $N/\alpha \leq p\leq \infty$. Nagoya Math. J. 167 (2002), 17-33. | DOI | MR | Zbl
[2] Gelfand, I. M., Shilov, G. E.: Generalized Functions, Properties and Operations. Vol. 1, Academic Press Inc. (1964). | MR
[3] Godoy, T., Urciuolo, M.: On certain integral operators of fractional type. Acta Math. Hung. 82 (1999), 99-105. | DOI | MR | Zbl
[4] Ricci, F., Sjogren, P.: Two-parameter maximal functions in the Heisenberg group. Math. Z. 199 (1988), 565-575. | DOI | MR
[5] Rocha, P., Urciuolo, M.: On the $H^{p}$-$L^{p}$ boundedness of some integral operators. Georgian Math. J. 18 (2011), 801-808. | DOI | MR | Zbl
[6] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton N. J. (1970). | MR | Zbl
[7] Stein, E. M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton N. J. (1993). | MR | Zbl
[8] Stein, E. M., Weiss, G.: On the theory of harmonic functions of several variables I: The theory of $H^{p}$ spaces. Acta Math. 103 (1960), 25-62. | DOI | MR
[9] Taibleson, M. H., Weiss, G.: The molecular characterization of certain Hardy spaces. Astérisque 77 (1980), 67-151. | MR | Zbl
Cité par Sources :