Keywords: four-point boundary value problem; one-signed solution; bifurcation method
@article{10_1007_s10587_012_0052_3,
author = {Ma, Ruyun and Chen, Ruipeng},
title = {Existence of one-signed solutions of nonlinear four-point boundary value problems},
journal = {Czechoslovak Mathematical Journal},
pages = {593--612},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0052-3},
mrnumber = {2984621},
zbl = {1265.34053},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0052-3/}
}
TY - JOUR AU - Ma, Ruyun AU - Chen, Ruipeng TI - Existence of one-signed solutions of nonlinear four-point boundary value problems JO - Czechoslovak Mathematical Journal PY - 2012 SP - 593 EP - 612 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0052-3/ DO - 10.1007/s10587-012-0052-3 LA - en ID - 10_1007_s10587_012_0052_3 ER -
%0 Journal Article %A Ma, Ruyun %A Chen, Ruipeng %T Existence of one-signed solutions of nonlinear four-point boundary value problems %J Czechoslovak Mathematical Journal %D 2012 %P 593-612 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0052-3/ %R 10.1007/s10587-012-0052-3 %G en %F 10_1007_s10587_012_0052_3
Ma, Ruyun; Chen, Ruipeng. Existence of one-signed solutions of nonlinear four-point boundary value problems. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 593-612. doi: 10.1007/s10587-012-0052-3
[1] Chu, J., Sun, Y., Chen, H.: Positive solutions of Neumann problems with singularities. J. Math. Anal. Appl. 337 (2008), 1267-1272 \MR 2386375. | DOI | MR | Zbl
[2] Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985) \MR 0787404. | MR | Zbl
[3] Jiang, D., Liu, H.: Existence of positive solutions to second order Neumann boundary value problems. J. Math. Res. Expo. 20 (2000), 360-364. | MR | Zbl
[4] Li, X., Jiang, D.: Optimal existence theory for single and multiple positive solutions to second order Neumann boundary value problems. Indian J. Pure Appl. Math. 35 (2004), 573-586. | MR | Zbl
[5] Li, Z.: Positive solutions of singular second-order Neumann boundary value problem. Ann. Differ. Equations 21 (2005), 321-326. | MR | Zbl
[6] Ma, R., Thompson, B.: Nodal solutions for nonlinear eigenvalue problems. Nonlinear Anal., Theory Methods Appl. 59 (2004), 707-718. | DOI | MR | Zbl
[7] Miciano, A. R., Shivaji, R.: Multiple positive solutions for a class of semipositone Neumann two-point boundary value problems. J. Math. Anal. Appl. 178 (1993), 102-115. | DOI | MR | Zbl
[8] Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7 (1971), 487-513. | DOI | MR | Zbl
[9] Rachůnková, I., Staněk, S., Tvrdý, M.: Solvability of Nonlinear Singular Problems for Ordinary Differential Equations. Hindawi Publishing Corporation, New York (2008). | MR
[10] Sun, J., Li, W.: Multiple positive solutions to second-order Neumann boundary value problems. Appl. Math. Comput. 146 (2003), 187-194. | DOI | MR | Zbl
[11] Sun, J., Li, W., Cheng, S.: Three positive solutions for second-order Neumann boundary value problems. Appl. Math. Lett. 17 (2004), 1079-1084. | DOI | MR | Zbl
[12] Sun, Y., Cho, Y. J., O'Regan, D.: Positive solution for singular second order Neumann boundary value problems via a cone fixed point theorem. Appl. Math. Comput. 210 (2009), 80-86 \MR 2504122. | DOI | MR
Cité par Sources :