Keywords: graph; split graph; degree sequence
@article{10_1007_s10587_012_0051_4,
author = {Yin, Jian-Hua},
title = {A {Havel-Hakimi} type procedure and a sufficient condition for a sequence to be potentially $S_{r,s}$-graphic},
journal = {Czechoslovak Mathematical Journal},
pages = {863--867},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0051-4},
mrnumber = {2984639},
zbl = {1265.05130},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0051-4/}
}
TY - JOUR
AU - Yin, Jian-Hua
TI - A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially $S_{r,s}$-graphic
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 863
EP - 867
VL - 62
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0051-4/
DO - 10.1007/s10587-012-0051-4
LA - en
ID - 10_1007_s10587_012_0051_4
ER -
%0 Journal Article
%A Yin, Jian-Hua
%T A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially $S_{r,s}$-graphic
%J Czechoslovak Mathematical Journal
%D 2012
%P 863-867
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0051-4/
%R 10.1007/s10587-012-0051-4
%G en
%F 10_1007_s10587_012_0051_4
Yin, Jian-Hua. A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially $S_{r,s}$-graphic. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 863-867. doi: 10.1007/s10587-012-0051-4
[1] Hakimi, S. L.: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10 (1962), 496-506. | DOI | MR | Zbl
[2] Havel, V.: A remark on the existence of finite graphs. Čas. Mat. 80 (1955), 477-480 Czech. | Zbl
[3] Lai, C. H., Hu, L. L.: Potentially $K_m-G$-graphical sequences: a survey. Czech. Math. J. 59 (2009), 1059-1075. | DOI | MR | Zbl
[4] Rao, A. R.: The clique number of a graph with a given degree sequence. Graph theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes 4 (1979), 251-267. | MR | Zbl
[5] Rao, A. R.: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.
[6] Yin, J. H.: A Rao-type characterization for a sequence to have a realization containing a split graph. Discrete Math. 311 (2011), 2485-2489. | DOI | MR | Zbl
Cité par Sources :