The AP-Denjoy and AP-Henstock integrals revisited
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 581-591
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation.
The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation.
DOI : 10.1007/s10587-012-0050-5
Classification : 26A39, 26A42, 26A46
Keywords: approximate Kurzweil-Henstock integral; approximate continuity; local system; variational measure
@article{10_1007_s10587_012_0050_5,
     author = {Skvortsov, Valentin A. and Sworowski, Piotr},
     title = {The {AP-Denjoy} and {AP-Henstock} integrals revisited},
     journal = {Czechoslovak Mathematical Journal},
     pages = {581--591},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0050-5},
     mrnumber = {2984620},
     zbl = {1265.26019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/}
}
TY  - JOUR
AU  - Skvortsov, Valentin A.
AU  - Sworowski, Piotr
TI  - The AP-Denjoy and AP-Henstock integrals revisited
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 581
EP  - 591
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/
DO  - 10.1007/s10587-012-0050-5
LA  - en
ID  - 10_1007_s10587_012_0050_5
ER  - 
%0 Journal Article
%A Skvortsov, Valentin A.
%A Sworowski, Piotr
%T The AP-Denjoy and AP-Henstock integrals revisited
%J Czechoslovak Mathematical Journal
%D 2012
%P 581-591
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/
%R 10.1007/s10587-012-0050-5
%G en
%F 10_1007_s10587_012_0050_5
Skvortsov, Valentin A.; Sworowski, Piotr. The AP-Denjoy and AP-Henstock integrals revisited. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 581-591. doi: 10.1007/s10587-012-0050-5

[1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506-524. | DOI | MR | Zbl

[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases. Czech. Math. J. 56(131) (2006), 559-578. | DOI | MR

[3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603. Springer Berlin (1995). | MR

[4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$. Real Anal. Exch. 23 (1997), 611-630. | DOI | MR

[5] Ene, V.: Thomson's variational measure. Real Anal. Exch. 24 (1998), 523-565. | DOI | MR | Zbl

[6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1991), 154-168. | MR | Zbl

[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals. J. Chungcheong Math. Soc. 17 (2004), 103-110.

[8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral. Bull. Korean Math. Soc. 42 (2005), 535-541. | DOI | MR | Zbl

[9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals. Czech. Math. J. 57(132) (2007), 689-696. | DOI | MR | Zbl

[10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics. 109 Cambridge (1993). | MR

[11] Saks, S.: Theory of the Integral. G. E. Stechert & Co New York (1937). | Zbl

[12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis. Mosc. Univ. Math. Bull. 57 (2002), 37-40. | MR

[13] Thomson, B. S.: Derivation bases on the real line. Real Anal. Exch. 8 (1983), 67-207, 278-442. | DOI | Zbl

[14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics. 1170 Springer Berlin (1985). | MR

[15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems. Real Anal. Exch. 19 (1994), 248-253. | Zbl

Cité par Sources :