Keywords: approximate Kurzweil-Henstock integral; approximate continuity; local system; variational measure
@article{10_1007_s10587_012_0050_5,
author = {Skvortsov, Valentin A. and Sworowski, Piotr},
title = {The {AP-Denjoy} and {AP-Henstock} integrals revisited},
journal = {Czechoslovak Mathematical Journal},
pages = {581--591},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0050-5},
mrnumber = {2984620},
zbl = {1265.26019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/}
}
TY - JOUR AU - Skvortsov, Valentin A. AU - Sworowski, Piotr TI - The AP-Denjoy and AP-Henstock integrals revisited JO - Czechoslovak Mathematical Journal PY - 2012 SP - 581 EP - 591 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/ DO - 10.1007/s10587-012-0050-5 LA - en ID - 10_1007_s10587_012_0050_5 ER -
%0 Journal Article %A Skvortsov, Valentin A. %A Sworowski, Piotr %T The AP-Denjoy and AP-Henstock integrals revisited %J Czechoslovak Mathematical Journal %D 2012 %P 581-591 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0050-5/ %R 10.1007/s10587-012-0050-5 %G en %F 10_1007_s10587_012_0050_5
Skvortsov, Valentin A.; Sworowski, Piotr. The AP-Denjoy and AP-Henstock integrals revisited. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 581-591. doi: 10.1007/s10587-012-0050-5
[1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems. J. Math. Anal. Appl. 271 (2002), 506-524. | DOI | MR | Zbl
[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases. Czech. Math. J. 56(131) (2006), 559-578. | DOI | MR
[3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603. Springer Berlin (1995). | MR
[4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$. Real Anal. Exch. 23 (1997), 611-630. | DOI | MR
[5] Ene, V.: Thomson's variational measure. Real Anal. Exch. 24 (1998), 523-565. | DOI | MR | Zbl
[6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral. Real Anal. Exch. 16 (1991), 154-168. | MR | Zbl
[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals. J. Chungcheong Math. Soc. 17 (2004), 103-110.
[8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral. Bull. Korean Math. Soc. 42 (2005), 535-541. | DOI | MR | Zbl
[9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals. Czech. Math. J. 57(132) (2007), 689-696. | DOI | MR | Zbl
[10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics. 109 Cambridge (1993). | MR
[11] Saks, S.: Theory of the Integral. G. E. Stechert & Co New York (1937). | Zbl
[12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis. Mosc. Univ. Math. Bull. 57 (2002), 37-40. | MR
[13] Thomson, B. S.: Derivation bases on the real line. Real Anal. Exch. 8 (1983), 67-207, 278-442. | DOI | Zbl
[14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics. 1170 Springer Berlin (1985). | MR
[15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems. Real Anal. Exch. 19 (1994), 248-253. | Zbl
Cité par Sources :