Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 849-861
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, first we introduce a new notion of commuting condition that $\phi \phi _{1} A = A \phi _{1} \phi $ between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for real hypersurfaces in $G_2({\mathbb C}^{m+2})$. Suprisingly, real hypersurfaces of type $(A)$, that is, a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in complex two plane Grassmannians $G_2({\mathbb C}^{m+2})$ satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying the commuting condition. Finally we get a characterization of Type $(A)$ in terms of such commuting condition $\phi \phi _{1} A = A \phi _{1} \phi $.
In this paper, first we introduce a new notion of commuting condition that $\phi \phi _{1} A = A \phi _{1} \phi $ between the shape operator $A$ and the structure tensors $\phi $ and $\phi _{1}$ for real hypersurfaces in $G_2({\mathbb C}^{m+2})$. Suprisingly, real hypersurfaces of type $(A)$, that is, a tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in complex two plane Grassmannians $G_2({\mathbb C}^{m+2})$ satisfy this commuting condition. Next we consider a complete classification of Hopf hypersurfaces in $G_2({\mathbb C}^{m+2})$ satisfying the commuting condition. Finally we get a characterization of Type $(A)$ in terms of such commuting condition $\phi \phi _{1} A = A \phi _{1} \phi $.
DOI : 10.1007/s10587-012-0049-y
Classification : 11R52, 53C40, 53C50, 53C55
Keywords: real hypersurface; complex two-plane Grassmannians; Hopf hypersurface; commuting shape operator
@article{10_1007_s10587_012_0049_y,
     author = {Lee, Hyunjin and Kim, Seonhui and Suh, Young Jin},
     title = {Real hypersurfaces in complex two-plane {Grassmannians} with certain commuting condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--861},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0049-y},
     mrnumber = {2984638},
     zbl = {1265.53075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0049-y/}
}
TY  - JOUR
AU  - Lee, Hyunjin
AU  - Kim, Seonhui
AU  - Suh, Young Jin
TI  - Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 849
EP  - 861
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0049-y/
DO  - 10.1007/s10587-012-0049-y
LA  - en
ID  - 10_1007_s10587_012_0049_y
ER  - 
%0 Journal Article
%A Lee, Hyunjin
%A Kim, Seonhui
%A Suh, Young Jin
%T Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition
%J Czechoslovak Mathematical Journal
%D 2012
%P 849-861
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0049-y/
%R 10.1007/s10587-012-0049-y
%G en
%F 10_1007_s10587_012_0049_y
Lee, Hyunjin; Kim, Seonhui; Suh, Young Jin. Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 849-861. doi: 10.1007/s10587-012-0049-y

[1] Alekseevskii, D. V.: Compact quaternion spaces. Funkts. Anal. Prilozh. 2 (1968), 11-20. | MR

[2] Berndt, J.: Riemannian geometry of complex two-plane Grassmannian. Rend. Semin. Mat., Torino 55 (1997), 19-83. | MR

[3] Berndt, J., Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians. Monatsh. Math. 127 (1999), 1-14. | DOI | MR | Zbl

[4] Berndt, J., Suh, Y. J.: Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians. Monatsh. Math. 137 (2002), 87-98. | DOI | MR | Zbl

[5] Lee, H., Suh, Y. J.: Real hypersurfaces of type $B$ in complex two-plane Grassmannians related to the Reeb vector. Bull. Korean Math. Soc. 47 (2010), 551-561. | DOI | MR | Zbl

[6] Pérez, J. D., Suh, Y. J.: The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians. J. Korean Math. Soc. 44 (2007), 211-235. | DOI | MR | Zbl

[7] Suh, Y. J.: Real hypersurfaces in complex two-plane Grassmannians with commuting shape operator. Bull. Aust. Math. Soc. 68 (2003), 379-393. | DOI | MR | Zbl

Cité par Sources :