The Kurzweil-Henstock theory of stochastic integration
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 829-848
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.
The Kurzweil-Henstock approach has been successful in giving an alternative definition to the classical Itô integral, and a simpler and more direct proof of the Itô Formula. The main advantage of this approach lies in its explicitness in defining the integral, thereby reducing the technicalities of the classical stochastic calculus. In this note, we give a unified theory of stochastic integration using the Kurzweil-Henstock approach, using the more general martingale as the integrator. We derive Henstock's Lemmas, absolute continuity property of the primitive process, integrability of stochastic processes and convergence theorems for the Kurzweil-Henstock stochastic integrals. These properties are well-known in the classical (non-stochastic) integration theory but have not been explicitly derived in the classical stochastic integration.
DOI : 10.1007/s10587-012-0048-z
Classification : 26A39, 60H05
Keywords: stochastic integral; Kurzweil-Henstock; convergence theorem
@article{10_1007_s10587_012_0048_z,
     author = {Toh, Tin-Lam and Chew, Tuan-Seng},
     title = {The {Kurzweil-Henstock} theory of stochastic integration},
     journal = {Czechoslovak Mathematical Journal},
     pages = {829--848},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0048-z},
     mrnumber = {2984637},
     zbl = {1265.26020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/}
}
TY  - JOUR
AU  - Toh, Tin-Lam
AU  - Chew, Tuan-Seng
TI  - The Kurzweil-Henstock theory of stochastic integration
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 829
EP  - 848
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/
DO  - 10.1007/s10587-012-0048-z
LA  - en
ID  - 10_1007_s10587_012_0048_z
ER  - 
%0 Journal Article
%A Toh, Tin-Lam
%A Chew, Tuan-Seng
%T The Kurzweil-Henstock theory of stochastic integration
%J Czechoslovak Mathematical Journal
%D 2012
%P 829-848
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/
%R 10.1007/s10587-012-0048-z
%G en
%F 10_1007_s10587_012_0048_z
Toh, Tin-Lam; Chew, Tuan-Seng. The Kurzweil-Henstock theory of stochastic integration. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 829-848. doi: 10.1007/s10587-012-0048-z

[1] Chew, T. S., Lee, P. Y.: Nonabsolute integration using Vitali covers. N. Z. J. Math. 23 (1994), 25-36. | MR | Zbl

[2] Chew, T. S., Toh, T. L., Tay, J. Y.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2002), 495-514. | DOI | MR | Zbl

[3] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration, 2nd edition. Birkhäuser Boston (1990). | MR

[4] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable. J. Lond. Math. Soc. 30 (1955), 273-286. | DOI | MR | Zbl

[5] Henstock, R.: Lectures on the Theory of Integration. World Scientific Singapore (1988). | MR | Zbl

[6] Henstock, R.: The General Theory of Integration. Clarendon Press Oxford (1991). | MR | Zbl

[7] Henstock, R.: Stochastic and other functional integrals. Real Anal. Exch. 16 (1991), 460-470. | DOI | MR | Zbl

[8] Hitsuda, M.: Formula for Brownian partial derivatives. Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15.

[9] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press Cambridge (2000). | MR

[10] Lee, T. W.: On the generalized Riemann integral and stochastic integral. J. Aust. Math. Soc. 21 (1976), 64-71. | DOI | MR | Zbl

[11] Marraffa, V.: A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998. Matimyás Mat. 22 (1999), 73-84. | MR

[12] McShane, E. J.: Stochastic Calculus and Stochastic Models. Academic Press New York (1974). | MR | Zbl

[13] Mouldowney, P.: A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153. Longman Harlow (1987).

[14] Nualart, D.: The Malliavin Calculus and Related Topics. Springer New York (1995). | MR | Zbl

[15] Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 78 (1988), 535-581. | DOI | MR | Zbl

[16] Pardoux, E., Protter, P.: A two-sided stochastic integral and its calculus. Probab. Theory Relat. Fields 76 (1987), 15-49. | DOI | MR | Zbl

[17] Pop-Stojanovic, Z. R.: On McShane's belated stochastic integral. SIAM J. Appl. Math. 22 (1972), 87-92. | DOI | MR | Zbl

[18] Protter, P.: A comparison of stochastic integrals. Ann. Probab. 7 (1979), 276-289. | DOI | MR | Zbl

[19] Protter, P.: Stochastic Integration and Differential Equations. Springer New York (1990). | MR | Zbl

[20] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edition. Springer Berlin (1994). | MR

[21] Skorohod, A. V.: On a generalisation of a stochastic integral. Theory Probab. Appl. 20 (1975), 219-233. | MR

[22] Stratonovich, R. L.: A new representation for stochastic integrals and equations. J. SIAM Control 4 (1966), 362-371. | DOI | MR

[23] Toh, T. L., Chew, T. S.: A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan. World Scientific Singapore (1999), 291-299. | MR

[24] Toh, T. L., Chew, T. S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147. | DOI | MR | Zbl

[25] Toh, T. L., Chew, T. S.: The non-uniform Riemann approach to multiple Itô-Wiener integral. Real Anal. Exch. 29 (2003-2004), 275-290. | MR

[26] Toh, T. L., Chew, T. S.: On the Henstock-Fubini Theorem for multiple stochastic integral. Real Anal. Exch. 30 (2004-2005), 295-310. | MR

[27] Toh, T. L., Chew, T. S.: On Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem. J. Math. Comput. Modeling 42 (2005), 139-149. | DOI | MR

[28] Toh, T. L., Chew, T. S.: On Itô-Kurzweil-Henstock integral and integration-by-part formula. Czech. Math. J. 55 (2005), 653-663. | DOI | MR | Zbl

[29] Toh, T. L., Chew, T. S.: On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes. Math. Bohem. 130 (2005), 63-73. | MR | Zbl

[30] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula. Real Anal. Exch. 35 (2009-2010), 375-3901-20. | MR

[31] Weizsäcker, H., G., G. Winkler: Stochastic Integrals: An introduction. Friedr. Vieweg & Sohn (1990). | MR | Zbl

[32] Wong, E., Zakai, M.: An extension of stochastic integrals in the plane. Ann. Probab. 5 (1977), 770-778. | DOI | MR | Zbl

[33] Xu, J. G., Lee, P. Y.: Stochastic integrals of Itô and Henstock. Real Anal. Exch. 18 (1992-1993), 352-366. | MR

[34] Yeh, H.: Martingales and Stochastic Analysis. World Scientific Singapore (1995). | MR | Zbl

[35] Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Th. Rel. Fields 111 (1998), 337-374. | MR | Zbl

Cité par Sources :