Keywords: stochastic integral; Kurzweil-Henstock; convergence theorem
@article{10_1007_s10587_012_0048_z,
author = {Toh, Tin-Lam and Chew, Tuan-Seng},
title = {The {Kurzweil-Henstock} theory of stochastic integration},
journal = {Czechoslovak Mathematical Journal},
pages = {829--848},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0048-z},
mrnumber = {2984637},
zbl = {1265.26020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/}
}
TY - JOUR AU - Toh, Tin-Lam AU - Chew, Tuan-Seng TI - The Kurzweil-Henstock theory of stochastic integration JO - Czechoslovak Mathematical Journal PY - 2012 SP - 829 EP - 848 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/ DO - 10.1007/s10587-012-0048-z LA - en ID - 10_1007_s10587_012_0048_z ER -
%0 Journal Article %A Toh, Tin-Lam %A Chew, Tuan-Seng %T The Kurzweil-Henstock theory of stochastic integration %J Czechoslovak Mathematical Journal %D 2012 %P 829-848 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0048-z/ %R 10.1007/s10587-012-0048-z %G en %F 10_1007_s10587_012_0048_z
Toh, Tin-Lam; Chew, Tuan-Seng. The Kurzweil-Henstock theory of stochastic integration. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 829-848. doi: 10.1007/s10587-012-0048-z
[1] Chew, T. S., Lee, P. Y.: Nonabsolute integration using Vitali covers. N. Z. J. Math. 23 (1994), 25-36. | MR | Zbl
[2] Chew, T. S., Toh, T. L., Tay, J. Y.: The non-uniform Riemann approach to Itô's integral. Real Anal. Exch. 27 (2002), 495-514. | DOI | MR | Zbl
[3] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration, 2nd edition. Birkhäuser Boston (1990). | MR
[4] Henstock, R.: The efficiency of convergence factors for functions of a continuous real variable. J. Lond. Math. Soc. 30 (1955), 273-286. | DOI | MR | Zbl
[5] Henstock, R.: Lectures on the Theory of Integration. World Scientific Singapore (1988). | MR | Zbl
[6] Henstock, R.: The General Theory of Integration. Clarendon Press Oxford (1991). | MR | Zbl
[7] Henstock, R.: Stochastic and other functional integrals. Real Anal. Exch. 16 (1991), 460-470. | DOI | MR | Zbl
[8] Hitsuda, M.: Formula for Brownian partial derivatives. Publ. Fac. of Integrated Arts and Sciences Hiroshima Univ. 3 (1979), 1-15.
[9] Lee, P. Y., Výborný, R.: The Integral: An Easy Approach after Kurzweil and Henstock. Cambridge University Press Cambridge (2000). | MR
[10] Lee, T. W.: On the generalized Riemann integral and stochastic integral. J. Aust. Math. Soc. 21 (1976), 64-71. | DOI | MR | Zbl
[11] Marraffa, V.: A descriptive characterization of the variational Henstock integral. Proceedings of the International Mathematics Conference in honor of Professor Lee Peng Yee on his 60th Birthday, Manila, 1998. Matimyás Mat. 22 (1999), 73-84. | MR
[12] McShane, E. J.: Stochastic Calculus and Stochastic Models. Academic Press New York (1974). | MR | Zbl
[13] Mouldowney, P.: A General Theory of Integration in Function Spaces. Pitman Research Notes in Math. 153. Longman Harlow (1987).
[14] Nualart, D.: The Malliavin Calculus and Related Topics. Springer New York (1995). | MR | Zbl
[15] Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields 78 (1988), 535-581. | DOI | MR | Zbl
[16] Pardoux, E., Protter, P.: A two-sided stochastic integral and its calculus. Probab. Theory Relat. Fields 76 (1987), 15-49. | DOI | MR | Zbl
[17] Pop-Stojanovic, Z. R.: On McShane's belated stochastic integral. SIAM J. Appl. Math. 22 (1972), 87-92. | DOI | MR | Zbl
[18] Protter, P.: A comparison of stochastic integrals. Ann. Probab. 7 (1979), 276-289. | DOI | MR | Zbl
[19] Protter, P.: Stochastic Integration and Differential Equations. Springer New York (1990). | MR | Zbl
[20] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edition. Springer Berlin (1994). | MR
[21] Skorohod, A. V.: On a generalisation of a stochastic integral. Theory Probab. Appl. 20 (1975), 219-233. | MR
[22] Stratonovich, R. L.: A new representation for stochastic integrals and equations. J. SIAM Control 4 (1966), 362-371. | DOI | MR
[23] Toh, T. L., Chew, T. S.: A Variational Approach to Itô's Integral. Proceedings of SAP's 98, Taiwan. World Scientific Singapore (1999), 291-299. | MR
[24] Toh, T. L., Chew, T. S.: The Riemann approach to stochastic integration using non-uniform meshes. J. Math. Anal. Appl. 280 (2003), 133-147. | DOI | MR | Zbl
[25] Toh, T. L., Chew, T. S.: The non-uniform Riemann approach to multiple Itô-Wiener integral. Real Anal. Exch. 29 (2003-2004), 275-290. | MR
[26] Toh, T. L., Chew, T. S.: On the Henstock-Fubini Theorem for multiple stochastic integral. Real Anal. Exch. 30 (2004-2005), 295-310. | MR
[27] Toh, T. L., Chew, T. S.: On Henstock's multiple Wiener integral and Henstock's version of Hu-Meyer theorem. J. Math. Comput. Modeling 42 (2005), 139-149. | DOI | MR
[28] Toh, T. L., Chew, T. S.: On Itô-Kurzweil-Henstock integral and integration-by-part formula. Czech. Math. J. 55 (2005), 653-663. | DOI | MR | Zbl
[29] Toh, T. L., Chew, T. S.: On belated differentiation and a characterization of Henstock-Kurzweil-Itô integrable processes. Math. Bohem. 130 (2005), 63-73. | MR | Zbl
[30] Toh, T. L., Chew, T. S.: Henstock's version of Itô's formula. Real Anal. Exch. 35 (2009-2010), 375-3901-20. | MR
[31] Weizsäcker, H., G., G. Winkler: Stochastic Integrals: An introduction. Friedr. Vieweg & Sohn (1990). | MR | Zbl
[32] Wong, E., Zakai, M.: An extension of stochastic integrals in the plane. Ann. Probab. 5 (1977), 770-778. | DOI | MR | Zbl
[33] Xu, J. G., Lee, P. Y.: Stochastic integrals of Itô and Henstock. Real Anal. Exch. 18 (1992-1993), 352-366. | MR
[34] Yeh, H.: Martingales and Stochastic Analysis. World Scientific Singapore (1995). | MR | Zbl
[35] Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Th. Rel. Fields 111 (1998), 337-374. | MR | Zbl
Cité par Sources :