Diversity in monoids
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 795-809
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements.
Let $M$ be a (commutative cancellative) monoid. A nonunit element $q\in M$ is called almost primary if for all $a,b\in M$, $q\mid ab$ implies that there exists $k\in \mathbb {N}$ such that $q\mid a^k$ or $q\mid b^k$. We introduce a new monoid invariant, diversity, which generalizes this almost primary property. This invariant is developed and contextualized with other monoid invariants. It naturally leads to two additional properties (homogeneity and strong homogeneity) that measure how far an almost primary element is from being primary. Finally, as an application the authors consider factorizations into almost primary elements, which generalizes the established notion of factorization into primary elements.
DOI : 10.1007/s10587-012-0046-1
Classification : 11B75, 11N80, 13A05, 20M05, 20M14
Keywords: factorization; monoid; diversity
@article{10_1007_s10587_012_0046_1,
     author = {Maney, Jack and Ponomarenko, Vadim},
     title = {Diversity in monoids},
     journal = {Czechoslovak Mathematical Journal},
     pages = {795--809},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0046-1},
     mrnumber = {2984635},
     zbl = {1265.20060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0046-1/}
}
TY  - JOUR
AU  - Maney, Jack
AU  - Ponomarenko, Vadim
TI  - Diversity in monoids
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 795
EP  - 809
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0046-1/
DO  - 10.1007/s10587-012-0046-1
LA  - en
ID  - 10_1007_s10587_012_0046_1
ER  - 
%0 Journal Article
%A Maney, Jack
%A Ponomarenko, Vadim
%T Diversity in monoids
%J Czechoslovak Mathematical Journal
%D 2012
%P 795-809
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0046-1/
%R 10.1007/s10587-012-0046-1
%G en
%F 10_1007_s10587_012_0046_1
Maney, Jack; Ponomarenko, Vadim. Diversity in monoids. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 795-809. doi: 10.1007/s10587-012-0046-1

[1] Anderson, D. D., Mahaney, L. A.: On primary factorizations. J. Pure Appl. Algebra 54 (1988), 141-154. | DOI | MR | Zbl

[2] Geroldinger, A.: Chains of factorizations in weakly Krull domains. Colloq. Math. 72 (1997), 53-81. | DOI | MR | Zbl

[3] Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL (2006). | MR | Zbl

[4] Geroldinger, A., Hassler, W.: Local tameness of {$v$}-{N}oetherian monoids. J. Pure Appl. Algebra 212 (2008), 1509-1524. | DOI | MR | Zbl

[5] Halter-Koch, F.: Divisor theories with primary elements and weakly Krull domains. Boll. Unione Mat. Ital., VII. Ser., B 9 (1995), 417-441. | MR | Zbl

[6] Halter-Koch, F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker, vol. 211, New York (1998). | MR | Zbl

Cité par Sources :