Keywords: factorization; monoid; diversity
@article{10_1007_s10587_012_0046_1,
author = {Maney, Jack and Ponomarenko, Vadim},
title = {Diversity in monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {795--809},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0046-1},
mrnumber = {2984635},
zbl = {1265.20060},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0046-1/}
}
TY - JOUR AU - Maney, Jack AU - Ponomarenko, Vadim TI - Diversity in monoids JO - Czechoslovak Mathematical Journal PY - 2012 SP - 795 EP - 809 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0046-1/ DO - 10.1007/s10587-012-0046-1 LA - en ID - 10_1007_s10587_012_0046_1 ER -
Maney, Jack; Ponomarenko, Vadim. Diversity in monoids. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 795-809. doi: 10.1007/s10587-012-0046-1
[1] Anderson, D. D., Mahaney, L. A.: On primary factorizations. J. Pure Appl. Algebra 54 (1988), 141-154. | DOI | MR | Zbl
[2] Geroldinger, A.: Chains of factorizations in weakly Krull domains. Colloq. Math. 72 (1997), 53-81. | DOI | MR | Zbl
[3] Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL (2006). | MR | Zbl
[4] Geroldinger, A., Hassler, W.: Local tameness of {$v$}-{N}oetherian monoids. J. Pure Appl. Algebra 212 (2008), 1509-1524. | DOI | MR | Zbl
[5] Halter-Koch, F.: Divisor theories with primary elements and weakly Krull domains. Boll. Unione Mat. Ital., VII. Ser., B 9 (1995), 417-441. | MR | Zbl
[6] Halter-Koch, F.: Ideal Systems. An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker, vol. 211, New York (1998). | MR | Zbl
Cité par Sources :