Sum and difference sets containing integer powers
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 787-793 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$ |C|>\begin {cases} \lfloor n/2 \rfloor +1 \text {if $m$ is odd}, \\ m \ell /2 +\delta \text {if $m$ is even},\\ \end {cases} $$ where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$ |C|>\begin {cases} \lfloor n/2 \rfloor +1 \text {if $m$ is odd}, \\ m \ell /2 +\delta \text {if $m$ is even},\\ \end {cases} $$ where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
DOI : 10.1007/s10587-012-0045-2
Classification : 11B13, 11B30
Keywords: sum and difference set; integer power
@article{10_1007_s10587_012_0045_2,
     author = {Yang, Quan-Hui and Wu, Jian-Dong},
     title = {Sum and difference sets containing integer powers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {787--793},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0045-2},
     mrnumber = {2984634},
     zbl = {1265.11017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/}
}
TY  - JOUR
AU  - Yang, Quan-Hui
AU  - Wu, Jian-Dong
TI  - Sum and difference sets containing integer powers
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 787
EP  - 793
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/
DO  - 10.1007/s10587-012-0045-2
LA  - en
ID  - 10_1007_s10587_012_0045_2
ER  - 
%0 Journal Article
%A Yang, Quan-Hui
%A Wu, Jian-Dong
%T Sum and difference sets containing integer powers
%J Czechoslovak Mathematical Journal
%D 2012
%P 787-793
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/
%R 10.1007/s10587-012-0045-2
%G en
%F 10_1007_s10587_012_0045_2
Yang, Quan-Hui; Wu, Jian-Dong. Sum and difference sets containing integer powers. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 787-793. doi: 10.1007/s10587-012-0045-2

[1] Alon, N.: Subset sums. J. Number Theory 27 (1987), 196-205. | DOI | MR | Zbl

[2] Erdős, P.: Some problems and results on combinatorial number theory. Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. | DOI | MR

[3] Erdős, P., Freiman, G.: On two additive problems. J. Number Theory 34 (1990), 1-12. | DOI | MR

[4] Freiman, G. A.: Sumsets and powers of 2. Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. | MR | Zbl

[5] Kapoor, V.: Sets whose sumset avoids a thin sequence. J. Number Theory 130 (2010), 534-538. | DOI | MR | Zbl

[6] Lev, V. F.: Representing powers of 2 by a sum of four integers. Combinatorica 16 (1996), 413-416. | DOI | MR | Zbl

[7] Nathanson, M. B., Sárközy, A.: Sumsets containing long arithmetic progressions and powers of 2. Acta Arith. 54 (1989), 147-154. | DOI | MR | Zbl

[8] Pan, H.: Note on integer powers in sumsets. J. Number Theory 117 (2006), 216-221. | DOI | MR | Zbl

Cité par Sources :