Keywords: sum and difference set; integer power
@article{10_1007_s10587_012_0045_2,
author = {Yang, Quan-Hui and Wu, Jian-Dong},
title = {Sum and difference sets containing integer powers},
journal = {Czechoslovak Mathematical Journal},
pages = {787--793},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0045-2},
mrnumber = {2984634},
zbl = {1265.11017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/}
}
TY - JOUR AU - Yang, Quan-Hui AU - Wu, Jian-Dong TI - Sum and difference sets containing integer powers JO - Czechoslovak Mathematical Journal PY - 2012 SP - 787 EP - 793 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/ DO - 10.1007/s10587-012-0045-2 LA - en ID - 10_1007_s10587_012_0045_2 ER -
%0 Journal Article %A Yang, Quan-Hui %A Wu, Jian-Dong %T Sum and difference sets containing integer powers %J Czechoslovak Mathematical Journal %D 2012 %P 787-793 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/ %R 10.1007/s10587-012-0045-2 %G en %F 10_1007_s10587_012_0045_2
Yang, Quan-Hui; Wu, Jian-Dong. Sum and difference sets containing integer powers. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 787-793. doi: 10.1007/s10587-012-0045-2
[1] Alon, N.: Subset sums. J. Number Theory 27 (1987), 196-205. | DOI | MR | Zbl
[2] Erdős, P.: Some problems and results on combinatorial number theory. Graph theory and its applications: East and West (Jinan, 1986). New York Academy of Sciences, Ann. N. Y. Acad. Sci. 576 (1989), 132-145. | DOI | MR
[3] Erdős, P., Freiman, G.: On two additive problems. J. Number Theory 34 (1990), 1-12. | DOI | MR
[4] Freiman, G. A.: Sumsets and powers of 2. Sets, graphs and numbers. A birthday salute to Vera T. Sós and András Hajnal. Amsterdam: North-Holland Publishing Company. Colloq. Math. Soc. János Bolyai 60 (1992), 279-286. | MR | Zbl
[5] Kapoor, V.: Sets whose sumset avoids a thin sequence. J. Number Theory 130 (2010), 534-538. | DOI | MR | Zbl
[6] Lev, V. F.: Representing powers of 2 by a sum of four integers. Combinatorica 16 (1996), 413-416. | DOI | MR | Zbl
[7] Nathanson, M. B., Sárközy, A.: Sumsets containing long arithmetic progressions and powers of 2. Acta Arith. 54 (1989), 147-154. | DOI | MR | Zbl
[8] Pan, H.: Note on integer powers in sumsets. J. Number Theory 117 (2006), 216-221. | DOI | MR | Zbl
Cité par Sources :