Sum and difference sets containing integer powers
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 787-793
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $n > m \geq 2$ be positive integers and $n=(m+1) \ell +r$, where $0 \leq r \leq m.$ Let $C$ be a subset of $\{0,1,\cdots ,n\}$. We prove that if $$ |C|>\begin {cases} \lfloor n/2 \rfloor +1 \text {if $m$ is odd}, \\ m \ell /2 +\delta \text {if $m$ is even},\\ \end {cases} $$ where $\lfloor x \rfloor $ denotes the largest integer less than or equal to $x$ and $\delta $ denotes the cardinality of even numbers in the interval $[0,\min \{r,m-2\}]$, then $C-C$ contains a power of $m$. We also show that these lower bounds are best possible.
DOI :
10.1007/s10587-012-0045-2
Classification :
11B13, 11B30
Keywords: sum and difference set; integer power
Keywords: sum and difference set; integer power
@article{10_1007_s10587_012_0045_2,
author = {Yang, Quan-Hui and Wu, Jian-Dong},
title = {Sum and difference sets containing integer powers},
journal = {Czechoslovak Mathematical Journal},
pages = {787--793},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {2012},
doi = {10.1007/s10587-012-0045-2},
mrnumber = {2984634},
zbl = {1265.11017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/}
}
TY - JOUR AU - Yang, Quan-Hui AU - Wu, Jian-Dong TI - Sum and difference sets containing integer powers JO - Czechoslovak Mathematical Journal PY - 2012 SP - 787 EP - 793 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/ DO - 10.1007/s10587-012-0045-2 LA - en ID - 10_1007_s10587_012_0045_2 ER -
%0 Journal Article %A Yang, Quan-Hui %A Wu, Jian-Dong %T Sum and difference sets containing integer powers %J Czechoslovak Mathematical Journal %D 2012 %P 787-793 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0045-2/ %R 10.1007/s10587-012-0045-2 %G en %F 10_1007_s10587_012_0045_2
Yang, Quan-Hui; Wu, Jian-Dong. Sum and difference sets containing integer powers. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 787-793. doi: 10.1007/s10587-012-0045-2
Cité par Sources :