On generalized Moser-Trudinger inequalities without boundary condition
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 743-785 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
We give a version of the Moser-Trudinger inequality without boundary condition for Orlicz-Sobolev spaces embedded into exponential and multiple exponential spaces. We also derive the Concentration-Compactness Alternative for this inequality. As an application of our Concentration-Compactness Alternative we prove that a functional with the sub-critical growth attains its maximum.
DOI : 10.1007/s10587-012-0044-3
Classification : 26D10, 46E30, 46E35, 49J99
Keywords: Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant; Moser-Trudinger inequality; concentration-compactness principle
@article{10_1007_s10587_012_0044_3,
     author = {\v{C}ern\'y, Robert},
     title = {On generalized {Moser-Trudinger} inequalities without boundary condition},
     journal = {Czechoslovak Mathematical Journal},
     pages = {743--785},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0044-3},
     mrnumber = {2984633},
     zbl = {1265.46047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/}
}
TY  - JOUR
AU  - Černý, Robert
TI  - On generalized Moser-Trudinger inequalities without boundary condition
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 743
EP  - 785
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/
DO  - 10.1007/s10587-012-0044-3
LA  - en
ID  - 10_1007_s10587_012_0044_3
ER  - 
%0 Journal Article
%A Černý, Robert
%T On generalized Moser-Trudinger inequalities without boundary condition
%J Czechoslovak Mathematical Journal
%D 2012
%P 743-785
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/
%R 10.1007/s10587-012-0044-3
%G en
%F 10_1007_s10587_012_0044_3
Černý, Robert. On generalized Moser-Trudinger inequalities without boundary condition. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 743-785. doi: 10.1007/s10587-012-0044-3

[1] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 (2012), 165-198. | MR | Zbl

[2] Černý, R.: Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities. Cent. Eur. J. Math. 10 (2012), 590-602. | DOI | MR

[3] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. (to appear) in Ann. Mat. Pura Appl.

[4] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities. Z. Anal. Anwend. 30 (2011), 355-375. | DOI | MR | Zbl

[5] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces. Czech. Math. J. 60 (2010), 751-782. | DOI | MR | Zbl

[6] Cherrier, P.: Meilleures constants dans des inégalités rélatives aux espaces de Sobolev. Bull. Sci. Math., II. Ser. 108 (1984), 225-262. | MR

[7] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39-65. | DOI | MR | Zbl

[8] Cianchi, A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54 (2005), 669-705. | DOI | MR | Zbl

[9] Cianchi, A., Pick, L.: Sobolev embedings into $BMO$, $VMO$, and $L^{\infty}$. Ark. Mat. 36 (1998), 317-340. | DOI | MR

[10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19-43. | DOI | MR | Zbl

[11] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 (1995), 151-181. | MR | Zbl

[12] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. R. Soc. Edinb., Section A 126 (1996), 995-1009. | DOI | MR | Zbl

[13] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 (1997), 116-150. | DOI | MR | Zbl

[14] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces. Proc. Am. Math. Soc. 126 (1998), 2417-2425. | DOI | MR

[15] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119-128. | MR | Zbl

[16] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124 (1996), 561-565. | DOI | MR | Zbl

[17] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), 196-227. | DOI | MR | Zbl

[18] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. | DOI | MR | Zbl

[19] Moser, J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20 (1971), 1077-1092. | DOI | MR | Zbl

[20] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), 391-467. | MR | Zbl

[21] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker New York (1991). | MR

[22] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-484. | MR | Zbl

Cité par Sources :