Keywords: Orlicz space; Orlicz-Sobolev space; embedding theorem; sharp constant; Moser-Trudinger inequality; concentration-compactness principle
@article{10_1007_s10587_012_0044_3,
author = {\v{C}ern\'y, Robert},
title = {On generalized {Moser-Trudinger} inequalities without boundary condition},
journal = {Czechoslovak Mathematical Journal},
pages = {743--785},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0044-3},
mrnumber = {2984633},
zbl = {1265.46047},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/}
}
TY - JOUR AU - Černý, Robert TI - On generalized Moser-Trudinger inequalities without boundary condition JO - Czechoslovak Mathematical Journal PY - 2012 SP - 743 EP - 785 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/ DO - 10.1007/s10587-012-0044-3 LA - en ID - 10_1007_s10587_012_0044_3 ER -
%0 Journal Article %A Černý, Robert %T On generalized Moser-Trudinger inequalities without boundary condition %J Czechoslovak Mathematical Journal %D 2012 %P 743-785 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0044-3/ %R 10.1007/s10587-012-0044-3 %G en %F 10_1007_s10587_012_0044_3
Černý, Robert. On generalized Moser-Trudinger inequalities without boundary condition. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 743-785. doi: 10.1007/s10587-012-0044-3
[1] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces. Math. Inequal. Appl. 15 (2012), 165-198. | MR | Zbl
[2] Černý, R.: Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities. Cent. Eur. J. Math. 10 (2012), 590-602. | DOI | MR
[3] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs. (to appear) in Ann. Mat. Pura Appl.
[4] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities. Z. Anal. Anwend. 30 (2011), 355-375. | DOI | MR | Zbl
[5] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces. Czech. Math. J. 60 (2010), 751-782. | DOI | MR | Zbl
[6] Cherrier, P.: Meilleures constants dans des inégalités rélatives aux espaces de Sobolev. Bull. Sci. Math., II. Ser. 108 (1984), 225-262. | MR
[7] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), 39-65. | DOI | MR | Zbl
[8] Cianchi, A.: Moser-Trudinger inequalities without boundary conditions and isoperimetric problems. Indiana Univ. Math. J. 54 (2005), 669-705. | DOI | MR | Zbl
[9] Cianchi, A., Pick, L.: Sobolev embedings into $BMO$, $VMO$, and $L^{\infty}$. Ark. Mat. 36 (1998), 317-340. | DOI | MR
[10] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), 19-43. | DOI | MR | Zbl
[11] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems. Stud. Math. 115 (1995), 151-181. | MR | Zbl
[12] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. R. Soc. Edinb., Section A 126 (1996), 995-1009. | DOI | MR | Zbl
[13] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces. J. Funct. Anal. 146 (1997), 116-150. | DOI | MR | Zbl
[14] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings in logarithmic Bessel-potential spaces. Proc. Am. Math. Soc. 126 (1998), 2417-2425. | DOI | MR
[15] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119-128. | MR | Zbl
[16] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124 (1996), 561-565. | DOI | MR | Zbl
[17] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204 (2003), 196-227. | DOI | MR | Zbl
[18] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Mat. Iberoam. 1 (1985), 145-201. | DOI | MR | Zbl
[19] Moser, J.: A sharp form of an inequality by Trudinger. Indiana Univ. Math. J. 20 (1971), 1077-1092. | DOI | MR | Zbl
[20] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces. Math. Inequal. Appl. 2 (1999), 391-467. | MR | Zbl
[21] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces. Pure and Applied Mathematics. Marcel Dekker New York (1991). | MR
[22] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-484. | MR | Zbl
Cité par Sources :