A generalization of amenability and inner amenability of groups
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 729-742
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.
Let $G$ be a locally compact group. We continue our work [A. Ghaffari: $\Gamma $-amenability of locally compact groups, Acta Math. Sinica, English Series, 26 (2010), 2313–2324] in the study of $\Gamma $-amenability of a locally compact group $G$ defined with respect to a closed subgroup $\Gamma $ of $G\times G$. In this paper, among other things, we introduce and study a closed subspace $A_\Gamma ^p(G)$ of $L^\infty (\Gamma )$ and then characterize the $\Gamma $-amenability of $G$ using $A_\Gamma ^p(G)$. Various necessary and sufficient conditions are found for a locally compact group to possess a $\Gamma $-invariant mean.
DOI : 10.1007/s10587-012-0043-4
Classification : 22D15, 43A60
Keywords: amenability; Banach algebra; inner amenability; locally compact group
@article{10_1007_s10587_012_0043_4,
     author = {Ghaffari, Ali},
     title = {A generalization of amenability and inner amenability of groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {729--742},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0043-4},
     mrnumber = {2984632},
     zbl = {1265.43003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0043-4/}
}
TY  - JOUR
AU  - Ghaffari, Ali
TI  - A generalization of amenability and inner amenability of groups
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 729
EP  - 742
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0043-4/
DO  - 10.1007/s10587-012-0043-4
LA  - en
ID  - 10_1007_s10587_012_0043_4
ER  - 
%0 Journal Article
%A Ghaffari, Ali
%T A generalization of amenability and inner amenability of groups
%J Czechoslovak Mathematical Journal
%D 2012
%P 729-742
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0043-4/
%R 10.1007/s10587-012-0043-4
%G en
%F 10_1007_s10587_012_0043_4
Ghaffari, Ali. A generalization of amenability and inner amenability of groups. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 729-742. doi: 10.1007/s10587-012-0043-4

[1] Bami, M. L., Mohammadzadeh, B.: Inner amenability of locally compact groups and their algebras. Stud. Sci. Math. Hung. 44 (2007), 265-274. | MR | Zbl

[2] Bratteli, O., Robinson, D. W.: Operator Algebras and Quantum Statistical Mechanics I. Springer New York-Heidelberg-Berlin (1979). | MR

[3] Dales, H. G.: Banach Algebras and Automatic Continuity. London Math. Soc. Monographs. Clarendon Press Oxford (2000). | MR

[4] Dunford, N., Schwartz, J. T.: Linear Operators. Part I. Interscience New York (1958).

[5] Edwards, R. E.: Functional Analysis. Holt, Rinehart and Winston New York (1965). | MR | Zbl

[6] Effros, E. G.: Property $\Gamma$ and inner amenability. Proc. Am. Math. Soc. 47 (1975), 483-486. | MR | Zbl

[7] Eymard, P.: L'algebre de Fourier d'un groupe localement compact. Bull. Soc. Math. Fr. 92 (1964), 181-236 French. | DOI | MR | Zbl

[8] Folland, G. B.: A Course in Abstract Harmonic Analysis. CRC Press Boca Raton (1995). | MR | Zbl

[9] Ghaffari, A.: $\Gamma$-amenability of locally compact groups. Acta Math. Sin., Engl. Ser. 26 (2010), 2313-2324. | DOI | MR | Zbl

[10] Ghaffari, A.: Structural properties of inner amenable discrete groups. Bull. Iran. Math. Soc. 33 (2007), 25-35. | MR | Zbl

[11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Springer Berlin (1963) | Zbl

[12] Herz, C.: Harmonic synthesis for subgroups. Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. | DOI | MR | Zbl

[13] Lau, A. T.-M.: Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fundam. Math. 118 (1983), 161-175. | DOI | MR | Zbl

[14] Lau, A. T.-M., Paterson, A. L. T.: Inner amenable locally compact groups. Trans. Am. Math. Soc. 325 (1991), 155-169. | DOI | MR | Zbl

[15] Lau, A. T.-M., Paterson, A. L. T.: Operator theoretic characterizations of [IN]-groups and inner amenability. Proc. Am. Math. Soc. 102 (1988), 893-897. | MR | Zbl

[16] Li, B., Pier, J.-P.: Amenability with respect to a closed subgroup of a product group. Adv. Math. (Beijing) 21 (1992), 97-112. | MR | Zbl

[17] Memarbashi, R., Riazi, A.: Topological inner invariant means. Stud. Sci. Math. Hung. 40 (2003), 293-299. | MR | Zbl

[18] Paterson, A. L. T.: Amenability. Math. Survey and Monographs Vol. 29. Am. Math. Soc. Providence (1988). | MR

[19] Pier, J.-P.: Amenable Banach Algebras. Pitman Research Notes in Mathematics Series, Vol. 172. Longman Scientific & Technical/John Wiley & Sons Harlow/New York (1988). | MR

[20] Pier, J.-P.: Amenable Locally Compact Groups. John Wiley & Sons New York (1984). | MR | Zbl

[21] Rudin, W.: Functional Analysis, 2nd ed. McGraw Hill New York (1991). | MR | Zbl

[22] Stokke, R.: Quasi-central bounded approximate identities in group algebras of locally compact groups. Ill. J. Math. 48 (2004), 151-170. | DOI | MR | Zbl

[23] Yuan, C. K.: Conjugate convolutions and inner invariant means. J. Math. Anal. Appl. 157 (1991), 166-178. | DOI | MR | Zbl

[24] Yuan, C. K.: Structural properties of inner amenable groups. Acta Math. Sin., New Ser. 8 (1992), 236-242. | DOI | MR | Zbl

Cité par Sources :