Variable Lebesgue norm estimates for BMO functions
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 717-727
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we are going to characterize the space ${\rm BMO}({\mathbb R}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space ${\rm BMO}({\mathbb R}^n)$ by using various function spaces. For example, Ho obtained a characterization of ${\rm BMO}({\mathbb R}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces.
In this paper, we are going to characterize the space ${\rm BMO}({\mathbb R}^n)$ through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space ${\rm BMO}({\mathbb R}^n)$ by using various function spaces. For example, Ho obtained a characterization of ${\rm BMO}({\mathbb R}^n)$ with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known John-Nirenberg inequality which can be seen as an extension to the variable Lebesgue spaces.
DOI : 10.1007/s10587-012-0042-5
Classification : 42B35, 46E30
Keywords: variable exponent; Morrey space; BMO
@article{10_1007_s10587_012_0042_5,
     author = {Izuki, Mitsuo and Sawano, Yoshihiro},
     title = {Variable {Lebesgue} norm estimates for {BMO} functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {717--727},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0042-5},
     mrnumber = {2984631},
     zbl = {1265.42087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0042-5/}
}
TY  - JOUR
AU  - Izuki, Mitsuo
AU  - Sawano, Yoshihiro
TI  - Variable Lebesgue norm estimates for BMO functions
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 717
EP  - 727
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0042-5/
DO  - 10.1007/s10587-012-0042-5
LA  - en
ID  - 10_1007_s10587_012_0042_5
ER  - 
%0 Journal Article
%A Izuki, Mitsuo
%A Sawano, Yoshihiro
%T Variable Lebesgue norm estimates for BMO functions
%J Czechoslovak Mathematical Journal
%D 2012
%P 717-727
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0042-5/
%R 10.1007/s10587-012-0042-5
%G en
%F 10_1007_s10587_012_0042_5
Izuki, Mitsuo; Sawano, Yoshihiro. Variable Lebesgue norm estimates for BMO functions. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 717-727. doi: 10.1007/s10587-012-0042-5

[1] Cruz-Uribe, D., Diening, L., Fiorenza, A.: A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9) 2 (2009), 151-173. | MR | Zbl

[2] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238 29 (2004), 247-249. | MR

[3] Diening, L.: Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl. 7 (2004), 245-253. | MR

[4] Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), 657-700. | DOI | MR

[5] Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34 (2009), 503-522. | MR

[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math. {2017} Springer, Berlin (2011). | MR | Zbl

[7] Ho, K.: Characterization of BMO in terms of rearrangement-invariant Banach function spaces. Expo. Math. 27 (2009), 363-372. | DOI | MR | Zbl

[8] Ho, K.: Characterizations of BMO by $A_p$ weights and $p$-convexity. Hiroshima Math. J. 41 (2011), 153-165. | DOI | MR | Zbl

[9] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent. Rend. Circ. Mat. Palermo 59 (2010), 199-213. | DOI | MR | Zbl

[10] John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961), 415-426. | DOI | MR | Zbl

[11] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czech. Math. J. 41 (1991), 592-618. | MR

[12] Lerner, A. K.: On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Amer. Math. Soc. 362 (2010), 4229-4242. | DOI | MR

[13] Luxenberg, W. A. J.: Banach Function Spaces. Technische Hogeschool te Delft Assen (1955) \MR 0072440.

[14] Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd. Tokyo (1950) \MR 0038565. | MR | Zbl

[15] Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co., Ltd. Tokyo (1951) \MR 0046560. | MR

[16] Sawano, Y., Sugano, S., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36 (2012), 517-556. | DOI | MR | Zbl

[17] Sawano, Y., Sugano, S., Tanaka, H.: Olsen's inequality and its applications to Schrödinger equations. RIMS Kôkyûroku Bessatsu B26 (2011), 51-80. | MR | Zbl

Cité par Sources :