An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 709-716
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the weighted space $W_1^{(2)}(\mathbb R,q)$ of Sobolev type $$ W_1^{(2)}(\mathbb R,q)=\left \{y\in A_{\rm loc}^{(1)}(\mathbb R)\colon \|y''\|_{L_1(\mathbb R)}+\|qy\|_{L_1(\mathbb R)}\infty \right \} $$ and the equation $$ - y''(x)+q(x)y(x)=f(x),\quad x\in \mathbb R. \leqno (1) $$ Here $f\in L_1(\mathbb R)$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ \endgraf We prove the following: \item {1)} The problems of embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R)$ and of correct solvability of (1) in $L_1(\mathbb R) $ are equivalent; \item {2)} an embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R) $ exists if and only if $$\exists a>0\colon \inf _{x\in \mathbb R}\int _{x-a}^{x+a} q(t) {\rm d} t>0.$$
We consider the weighted space $W_1^{(2)}(\mathbb R,q)$ of Sobolev type $$ W_1^{(2)}(\mathbb R,q)=\left \{y\in A_{\rm loc}^{(1)}(\mathbb R)\colon \|y''\|_{L_1(\mathbb R)}+\|qy\|_{L_1(\mathbb R)}\infty \right \} $$ and the equation $$ - y''(x)+q(x)y(x)=f(x),\quad x\in \mathbb R. \leqno (1) $$ Here $f\in L_1(\mathbb R)$ and $0\le q\in L_1^{\rm loc}(\mathbb R).$ \endgraf We prove the following: \item {1)} The problems of embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R)$ and of correct solvability of (1) in $L_1(\mathbb R) $ are equivalent; \item {2)} an embedding $W_1^{(2)}(\mathbb R,q)\hookrightarrow L_1(\mathbb R) $ exists if and only if $$\exists a>0\colon \inf _{x\in \mathbb R}\int _{x-a}^{x+a} q(t) {\rm d} t>0.$$
DOI : 10.1007/s10587-012-0041-6
Classification : 34B24, 34B40, 46E35
Keywords: Sobolev space; embedding theorem; Sturm-Liouville equation
@article{10_1007_s10587_012_0041_6,
     author = {Chernyavskaya, Nina A. and Shuster, Leonid A.},
     title = {An embedding theorem for a weighted space of {Sobolev} type and correct solvability of the {Sturm-Liouville} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {709--716},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0041-6},
     mrnumber = {2984630},
     zbl = {1265.34106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/}
}
TY  - JOUR
AU  - Chernyavskaya, Nina A.
AU  - Shuster, Leonid A.
TI  - An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 709
EP  - 716
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/
DO  - 10.1007/s10587-012-0041-6
LA  - en
ID  - 10_1007_s10587_012_0041_6
ER  - 
%0 Journal Article
%A Chernyavskaya, Nina A.
%A Shuster, Leonid A.
%T An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation
%J Czechoslovak Mathematical Journal
%D 2012
%P 709-716
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/
%R 10.1007/s10587-012-0041-6
%G en
%F 10_1007_s10587_012_0041_6
Chernyavskaya, Nina A.; Shuster, Leonid A. An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 709-716. doi: 10.1007/s10587-012-0041-6

[1] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm-Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413-1426. | DOI | MR | Zbl

[2] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(R)$. Proc. Am. Math. Soc. 130 (2002), 1043-1054. | DOI | MR | Zbl

[3] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. | DOI | MR | Zbl

[4] Grinshpun, E., Otelbaev, M.: On smoothness of solutions of nonlinear Sturm-Liouville equation in $L_1(-\infty,\infty)$. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 5 (1984), 26-29 Russian. | MR

[5] Mynbaev, K., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators. Moskva: Nauka 286 (1988), Russian. English summary. | MR | Zbl

[6] Ojnarov, R.: Separability of the Schrödinger operator in the space of summable functions. Dokl. Akad. Nauk SSSR 285 (1985), 1062-1064. | MR

[7] Ojnarov, R.: Some properties of the Sturm-Liouville operator in $L_p$. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 152 (1990), 43-47. | MR

[8] Otelbaev, M. O.: On coercive estimates of solutions of difference equations. Tr. Mat. Inst. Steklova 181 (1988), Russian 241-249. | MR | Zbl

[9] Otelbaev, M.: On smoothness of a solution of a nonlinear parabolic equation. In 10th Czechoslovak-Soviet Meeting ``Application of Fundamental Methods and Methods of Theory of Functions to Problems of Mathematical Physics'', Stara Gura, 26.09.--01.10. 1988 37.

Cité par Sources :