Keywords: Sobolev space; embedding theorem; Sturm-Liouville equation
@article{10_1007_s10587_012_0041_6,
author = {Chernyavskaya, Nina A. and Shuster, Leonid A.},
title = {An embedding theorem for a weighted space of {Sobolev} type and correct solvability of the {Sturm-Liouville} equation},
journal = {Czechoslovak Mathematical Journal},
pages = {709--716},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0041-6},
mrnumber = {2984630},
zbl = {1265.34106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/}
}
TY - JOUR AU - Chernyavskaya, Nina A. AU - Shuster, Leonid A. TI - An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation JO - Czechoslovak Mathematical Journal PY - 2012 SP - 709 EP - 716 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/ DO - 10.1007/s10587-012-0041-6 LA - en ID - 10_1007_s10587_012_0041_6 ER -
%0 Journal Article %A Chernyavskaya, Nina A. %A Shuster, Leonid A. %T An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation %J Czechoslovak Mathematical Journal %D 2012 %P 709-716 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0041-6/ %R 10.1007/s10587-012-0041-6 %G en %F 10_1007_s10587_012_0041_6
Chernyavskaya, Nina A.; Shuster, Leonid A. An embedding theorem for a weighted space of Sobolev type and correct solvability of the Sturm-Liouville equation. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 709-716. doi: 10.1007/s10587-012-0041-6
[1] Chernyavskaya, N., Shuster, L.: Estimates for the Green function of a general Sturm-Liouville operator and their applications. Proc. Am. Math. Soc. 127 (1999), 1413-1426. | DOI | MR | Zbl
[2] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability of the Sturm-Liouville equation in the space $L_p(R)$. Proc. Am. Math. Soc. 130 (2002), 1043-1054. | DOI | MR | Zbl
[3] Chernyavskaya, N., Shuster, L.: A criterion for correct solvability in $L_p(\Bbb R)$ of a general Sturm-Liouville equation. J. Lond. Math. Soc., II. Ser. 80 (2009), 99-120. | DOI | MR | Zbl
[4] Grinshpun, E., Otelbaev, M.: On smoothness of solutions of nonlinear Sturm-Liouville equation in $L_1(-\infty,\infty)$. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 5 (1984), 26-29 Russian. | MR
[5] Mynbaev, K., Otelbaev, M. O.: Weighted Functional Spaces and the Spectrum of Differential Operators. Moskva: Nauka 286 (1988), Russian. English summary. | MR | Zbl
[6] Ojnarov, R.: Separability of the Schrödinger operator in the space of summable functions. Dokl. Akad. Nauk SSSR 285 (1985), 1062-1064. | MR
[7] Ojnarov, R.: Some properties of the Sturm-Liouville operator in $L_p$. Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat. 152 (1990), 43-47. | MR
[8] Otelbaev, M. O.: On coercive estimates of solutions of difference equations. Tr. Mat. Inst. Steklova 181 (1988), Russian 241-249. | MR | Zbl
[9] Otelbaev, M.: On smoothness of a solution of a nonlinear parabolic equation. In 10th Czechoslovak-Soviet Meeting ``Application of Fundamental Methods and Methods of Theory of Functions to Problems of Mathematical Physics'', Stara Gura, 26.09.--01.10. 1988 37.
Cité par Sources :