Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 695-708
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb {C}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133--143.
In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of $\mathbb {C}^N$, and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133--143.
DOI : 10.1007/s10587-012-0040-7
Classification : 32A37, 32H02, 47B33, 47B38, 47G10
Keywords: weighted composition operator; Hardy space; weighted Bergman space; essential norm; compact; difference
@article{10_1007_s10587_012_0040_7,
     author = {Zhou, Ze-Hua and Liang, Yu-Xia},
     title = {Differences of weighted composition operators from {Hardy} space to weighted-type spaces on the unit ball},
     journal = {Czechoslovak Mathematical Journal},
     pages = {695--708},
     year = {2012},
     volume = {62},
     number = {3},
     doi = {10.1007/s10587-012-0040-7},
     mrnumber = {2984629},
     zbl = {1258.47051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/}
}
TY  - JOUR
AU  - Zhou, Ze-Hua
AU  - Liang, Yu-Xia
TI  - Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 695
EP  - 708
VL  - 62
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/
DO  - 10.1007/s10587-012-0040-7
LA  - en
ID  - 10_1007_s10587_012_0040_7
ER  - 
%0 Journal Article
%A Zhou, Ze-Hua
%A Liang, Yu-Xia
%T Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball
%J Czechoslovak Mathematical Journal
%D 2012
%P 695-708
%V 62
%N 3
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/
%R 10.1007/s10587-012-0040-7
%G en
%F 10_1007_s10587_012_0040_7
Zhou, Ze-Hua; Liang, Yu-Xia. Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 695-708. doi: 10.1007/s10587-012-0040-7

[1] Allen, R. F., Colonna, F.: Weighted composition operators from $H^{\infty}$ to the Bloch space of a bounded homogeneous domain. Integral Equations Oper. Theory 66 (2010), 21-40. | DOI | MR

[2] Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42 (1999), 139-148. | DOI | MR | Zbl

[3] Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc., Ser. A 64 (1998), 101-118. | DOI | MR | Zbl

[4] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Aust. Math. Soc. 84 (2008), 9-20. | DOI | MR

[5] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics Boca Raton, FL, CRC Press (1995). | MR | Zbl

[6] Dai, J. N., Ouyang, C. H.: Differences of weighted composition operators on $H_{\alpha}^\infty(B_N)$. J. Inequal. Appl. Article ID 127431 (2009), 19 pp. | MR

[7] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc. Abstr. Appl. Anal. Article ID 983132 (2008), 10 pp. | MR | Zbl

[8] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc. Bull. Aust. Math. Soc. 79 (2009), 465-471. | DOI | MR | Zbl

[9] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$. Jarosz, Krzysztof (ed.), Function spaces. Proceedings of the 4th conference, Edwardsville, IL, USA (2002), Providence, RI: American Mathematical Society (AMS), Contemp. Math 328 177-188 (2003). | MR

[10] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$. Integral Equations Oper. Theory 53 (2005), 509-526. | MR

[11] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl. 314 (2006), 736-748. | DOI | MR | Zbl

[12] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces. J. Oper. Theory 57 (2007), 229-242. | MR | Zbl

[13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133-143. | DOI | MR

[14] MacCluer, B. D.: Compact composition operators on $H^p(B_N)$. Mich. Math. J. 32 (1985), 237-248. | DOI | MR | Zbl

[15] MacCluer, B. D., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$. Integral Equations Oper. Theory 40 (2001), 481-494. | MR

[16] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. | DOI | MR | Zbl

[17] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 191-215. | DOI | MR | Zbl

[18] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics New York, Springer (1993). | MR | Zbl

[19] Stević, S., Wolf, E.: Differences of composition operators between weighted-type spaces of holomorphic functions on the unit ball of $C^n$. Appl. Math. Comput. 215 (2009), 1752-1760. | DOI | MR

[20] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$. Integral Equations Oper. Theory 48 (2004), 265-280. | DOI | MR

[21] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk. Result. Math. 51 (2008), 361-372. | DOI | MR | Zbl

[22] Yang, K. B., Zhou, Z. H.: Essential norm of the difference of composition operators on Bloch space. Czech. Math. J. 60 (2010), 1139-1152. | DOI | MR | Zbl

[23] Zeng, H. G., Zhou, Z. H.: An estimate of the essential norm of a composition operator from $ F(p, q, s)$ to $\mathcal{B}^\alpha$ in the unit ball. J. Inequal. Appl. Article ID 132970 (2010), 22 pp. | MR

[24] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p, q, s)$ to Bloch type spaces. Int. J. Math. 19 (2008), 899-926. | DOI | MR | Zbl

[25] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. J. 50 (2002), 381-405. | DOI | MR | Zbl

[26] Zhu, K. H.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl

Cité par Sources :