Keywords: weighted composition operator; Hardy space; weighted Bergman space; essential norm; compact; difference
@article{10_1007_s10587_012_0040_7,
author = {Zhou, Ze-Hua and Liang, Yu-Xia},
title = {Differences of weighted composition operators from {Hardy} space to weighted-type spaces on the unit ball},
journal = {Czechoslovak Mathematical Journal},
pages = {695--708},
year = {2012},
volume = {62},
number = {3},
doi = {10.1007/s10587-012-0040-7},
mrnumber = {2984629},
zbl = {1258.47051},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/}
}
TY - JOUR AU - Zhou, Ze-Hua AU - Liang, Yu-Xia TI - Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball JO - Czechoslovak Mathematical Journal PY - 2012 SP - 695 EP - 708 VL - 62 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/ DO - 10.1007/s10587-012-0040-7 LA - en ID - 10_1007_s10587_012_0040_7 ER -
%0 Journal Article %A Zhou, Ze-Hua %A Liang, Yu-Xia %T Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball %J Czechoslovak Mathematical Journal %D 2012 %P 695-708 %V 62 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0040-7/ %R 10.1007/s10587-012-0040-7 %G en %F 10_1007_s10587_012_0040_7
Zhou, Ze-Hua; Liang, Yu-Xia. Differences of weighted composition operators from Hardy space to weighted-type spaces on the unit ball. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 3, pp. 695-708. doi: 10.1007/s10587-012-0040-7
[1] Allen, R. F., Colonna, F.: Weighted composition operators from $H^{\infty}$ to the Bloch space of a bounded homogeneous domain. Integral Equations Oper. Theory 66 (2010), 21-40. | DOI | MR
[2] Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions. Can. Math. Bull. 42 (1999), 139-148. | DOI | MR | Zbl
[3] Bonet, J., Domański, P., Lindström, M., Taskinen, J.: Composition operators between weighted Banach spaces of analytic functions. J. Aust. Math. Soc., Ser. A 64 (1998), 101-118. | DOI | MR | Zbl
[4] Bonet, J., Lindström, M., Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions. J. Aust. Math. Soc. 84 (2008), 9-20. | DOI | MR
[5] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics Boca Raton, FL, CRC Press (1995). | MR | Zbl
[6] Dai, J. N., Ouyang, C. H.: Differences of weighted composition operators on $H_{\alpha}^\infty(B_N)$. J. Inequal. Appl. Article ID 127431 (2009), 19 pp. | MR
[7] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the space of bounded analytic functions in the polydisc. Abstr. Appl. Anal. Article ID 983132 (2008), 10 pp. | MR | Zbl
[8] Fang, Z. S., Zhou, Z. H.: Differences of composition operators on the Bloch space in the polydisc. Bull. Aust. Math. Soc. 79 (2009), 465-471. | DOI | MR | Zbl
[9] Gorkin, P., Mortini, R., Suarez, D.: Homotopic composition operators on $H^\infty(B^n)$. Jarosz, Krzysztof (ed.), Function spaces. Proceedings of the 4th conference, Edwardsville, IL, USA (2002), Providence, RI: American Mathematical Society (AMS), Contemp. Math 328 177-188 (2003). | MR
[10] Hosokawa, T., Izuchi, K., Ohno, S.: Topological structure of the space of weighted composition operators on $H^\infty$. Integral Equations Oper. Theory 53 (2005), 509-526. | MR
[11] Hosokawa, T., Ohno, S.: Topological structures of the sets of composition operators on the Bloch spaces. J. Math. Anal. Appl. 314 (2006), 736-748. | DOI | MR | Zbl
[12] Hosokawa, T., Ohno, S.: Differences of composition operators on the Bloch spaces. J. Oper. Theory 57 (2007), 229-242. | MR | Zbl
[13] Lindström, M., Wolf, E.: Essential norm of the difference of weighted composition operators. Monatsh. Math. 153 (2008), 133-143. | DOI | MR
[14] MacCluer, B. D.: Compact composition operators on $H^p(B_N)$. Mich. Math. J. 32 (1985), 237-248. | DOI | MR | Zbl
[15] MacCluer, B. D., Ohno, S., Zhao, R.: Topological structure of the space of composition operators on $H^\infty$. Integral Equations Oper. Theory 40 (2001), 481-494. | MR
[16] Moorhouse, J.: Compact differences of composition operators. J. Funct. Anal. 219 (2005), 70-92. | DOI | MR | Zbl
[17] Ohno, S., Stroethoff, K., Zhao, R.: Weighted composition operators between Bloch-type spaces. Rocky Mt. J. Math. 33 (2003), 191-215. | DOI | MR | Zbl
[18] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics New York, Springer (1993). | MR | Zbl
[19] Stević, S., Wolf, E.: Differences of composition operators between weighted-type spaces of holomorphic functions on the unit ball of $C^n$. Appl. Math. Comput. 215 (2009), 1752-1760. | DOI | MR
[20] Toews, C.: Topological components of the set of composition operators on $H^{\infty}(B_N)$. Integral Equations Oper. Theory 48 (2004), 265-280. | DOI | MR
[21] Wolf, E.: Differences of composition operators between weighted Banach spaces of holomorphic functions on the unit polydisk. Result. Math. 51 (2008), 361-372. | DOI | MR | Zbl
[22] Yang, K. B., Zhou, Z. H.: Essential norm of the difference of composition operators on Bloch space. Czech. Math. J. 60 (2010), 1139-1152. | DOI | MR | Zbl
[23] Zeng, H. G., Zhou, Z. H.: An estimate of the essential norm of a composition operator from $ F(p, q, s)$ to $\mathcal{B}^\alpha$ in the unit ball. J. Inequal. Appl. Article ID 132970 (2010), 22 pp. | MR
[24] Zhou, Z. H., Chen, R. Y.: Weighted composition operators from $F(p, q, s)$ to Bloch type spaces. Int. J. Math. 19 (2008), 899-926. | DOI | MR | Zbl
[25] Zhou, Z. H., Shi, J. H.: Compactness of composition operators on the Bloch space in classical bounded symmetric domains. Mich. Math. J. 50 (2002), 381-405. | DOI | MR | Zbl
[26] Zhu, K. H.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226 Springer, New York (2005). | MR | Zbl
Cité par Sources :