Keywords: prime rings; differential identities; generalized derivations; Banach algebra
@article{10_1007_s10587_012_0039_0,
author = {de Filippis, Vincenzo and Scudo, Giovanni and Tammam El-Sayiad, Mohammad S.},
title = {An identity with generalized derivations on {Lie} ideals, right ideals and {Banach} algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {453--468},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0039-0},
mrnumber = {2990186},
zbl = {1249.16045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/}
}
TY - JOUR AU - de Filippis, Vincenzo AU - Scudo, Giovanni AU - Tammam El-Sayiad, Mohammad S. TI - An identity with generalized derivations on Lie ideals, right ideals and Banach algebras JO - Czechoslovak Mathematical Journal PY - 2012 SP - 453 EP - 468 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/ DO - 10.1007/s10587-012-0039-0 LA - en ID - 10_1007_s10587_012_0039_0 ER -
%0 Journal Article %A de Filippis, Vincenzo %A Scudo, Giovanni %A Tammam El-Sayiad, Mohammad S. %T An identity with generalized derivations on Lie ideals, right ideals and Banach algebras %J Czechoslovak Mathematical Journal %D 2012 %P 453-468 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/ %R 10.1007/s10587-012-0039-0 %G en %F 10_1007_s10587_012_0039_0
de Filippis, Vincenzo; Scudo, Giovanni; Tammam El-Sayiad, Mohammad S. An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 453-468. doi: 10.1007/s10587-012-0039-0
[1] Beidar, K. I.: Rings with generalized identities. III. Mosc. Univ. Math. Bull. 33 (1978), 53-58. | MR | Zbl
[2] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). | MR
[3] Brešar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. 133 (1995), 21-29. | DOI | MR | Zbl
[4] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | Zbl
[5] Filippis, V. De: On the annihilator of commutators with derivation in prime rings. Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. | MR | Zbl
[6] Filippis, V. De: A result on vanishing derivations for commutators on right ideals. Math. Pannonica 16 (2005), 3-18. | MR | Zbl
[7] Filippis, V. De: A product of generalized derivations on polynomials in prime rings. Collect. Math. 61 (2010), 303-322. | DOI | MR
[8] Vincenzo, O. M. Di: On the n-th centralizer of a Lie ideal. Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. | MR | Zbl
[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR
[10] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. | DOI | MR | Zbl
[11] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). | MR | Zbl
[12] Jacobson, N.: PI-Algebras. An Introduction. Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). | MR | Zbl
[13] Jacobson, N.: Structure of Rings. Amererican Mathematical Society. Providence R.I. (1956). | MR | Zbl
[14] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067-1073. | DOI | MR | Zbl
[15] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168. | DOI | MR
[16] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. | DOI | MR | Zbl
[17] Kim, B.: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607-618. | DOI | MR | Zbl
[18] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | Zbl
[19] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | Zbl
[20] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. | MR | Zbl
[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR
[22] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical. Arch. Math. 57 (1991), 469-474. | DOI | MR | Zbl
[23] Mathieu, M., Runde, V.: Derivations mapping into the radical II. Bull. Lond. Math. Soc. 24 (1992), 485-487. | DOI | MR | Zbl
[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671-678. | DOI | MR | Zbl
[25] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100. | DOI | MR | Zbl
[26] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166-170. | DOI | MR | Zbl
[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. | DOI | MR | Zbl
[28] Thomas, M. P.: The image of a derivation is contained in the radical. Ann. Math. (2) 128/3 (1988), 435-460. | MR | Zbl
[29] Wong, T. L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | Zbl
Cité par Sources :