An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 453-468
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.
Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.
DOI : 10.1007/s10587-012-0039-0
Classification : 16N60, 16W25, 47B47, 47B48
Keywords: prime rings; differential identities; generalized derivations; Banach algebra
@article{10_1007_s10587_012_0039_0,
     author = {de Filippis, Vincenzo and Scudo, Giovanni and Tammam El-Sayiad, Mohammad S.},
     title = {An identity with generalized derivations on {Lie} ideals, right ideals and {Banach} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {453--468},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0039-0},
     mrnumber = {2990186},
     zbl = {1249.16045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/}
}
TY  - JOUR
AU  - de Filippis, Vincenzo
AU  - Scudo, Giovanni
AU  - Tammam El-Sayiad, Mohammad S.
TI  - An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 453
EP  - 468
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/
DO  - 10.1007/s10587-012-0039-0
LA  - en
ID  - 10_1007_s10587_012_0039_0
ER  - 
%0 Journal Article
%A de Filippis, Vincenzo
%A Scudo, Giovanni
%A Tammam El-Sayiad, Mohammad S.
%T An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
%J Czechoslovak Mathematical Journal
%D 2012
%P 453-468
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0039-0/
%R 10.1007/s10587-012-0039-0
%G en
%F 10_1007_s10587_012_0039_0
de Filippis, Vincenzo; Scudo, Giovanni; Tammam El-Sayiad, Mohammad S. An identity with generalized derivations on Lie ideals, right ideals and Banach algebras. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 453-468. doi: 10.1007/s10587-012-0039-0

[1] Beidar, K. I.: Rings with generalized identities. III. Mosc. Univ. Math. Bull. 33 (1978), 53-58. | MR | Zbl

[2] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). | MR

[3] Brešar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. 133 (1995), 21-29. | DOI | MR | Zbl

[4] Chuang, C. L.: GPIs having coefficients in Utumi quotient rings. Proc. Am. Math. Soc. 103 (1988), 723-728. | DOI | MR | Zbl

[5] Filippis, V. De: On the annihilator of commutators with derivation in prime rings. Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. | MR | Zbl

[6] Filippis, V. De: A result on vanishing derivations for commutators on right ideals. Math. Pannonica 16 (2005), 3-18. | MR | Zbl

[7] Filippis, V. De: A product of generalized derivations on polynomials in prime rings. Collect. Math. 61 (2010), 303-322. | DOI | MR

[8] Vincenzo, O. M. Di: On the n-th centralizer of a Lie ideal. Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. | MR | Zbl

[9] Erickson, T. S., III, W. S. Martindale, Osborn, J. M.: Prime nonassociative algebras. Pac. J. Math. 60 (1975), 49-63. | DOI | MR

[10] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem. Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. | DOI | MR | Zbl

[11] Herstein, I. N.: Topics in Ring Theory. Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). | MR | Zbl

[12] Jacobson, N.: PI-Algebras. An Introduction. Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). | MR | Zbl

[13] Jacobson, N.: Structure of Rings. Amererican Mathematical Society. Providence R.I. (1956). | MR | Zbl

[14] Johnson, B. E., Sinclair, A. M.: Continuity of derivations and a problem of Kaplansky. Am. J. Math. 90 (1968), 1067-1073. | DOI | MR | Zbl

[15] Kharchenko, V. K.: Differential identities of prime rings. Algebra Logic 17 (1979), 155-168. | DOI | MR

[16] Kim, B.: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. | DOI | MR | Zbl

[17] Kim, B.: Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), 607-618. | DOI | MR | Zbl

[18] Lanski, C.: Differential identities, Lie ideals, and Posner's theorems. Pac. J. Math. 134 (1988), 275-297. | DOI | MR | Zbl

[19] Lee, T.-K.: Generalized derivations of left faithful rings. Commun. Algebra 27 (1999), 4057-4073. | DOI | MR | Zbl

[20] Lee, T.-K.: Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. | MR | Zbl

[21] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity. J. Algebra 12 (1969), 576-584. | DOI | MR

[22] Mathieu, M., Murphy, G. J.: Derivations mapping into the radical. Arch. Math. 57 (1991), 469-474. | DOI | MR | Zbl

[23] Mathieu, M., Runde, V.: Derivations mapping into the radical II. Bull. Lond. Math. Soc. 24 (1992), 485-487. | DOI | MR | Zbl

[24] Park, K.-H.: On derivations in noncommutative semiprime rings and Banach algebras. Bull. Korean Math. Soc. 42 (2005), 671-678. | DOI | MR | Zbl

[25] Posner, E. C.: Derivations in prime rings. Proc. Am. Math. Soc. 8 (1958), 1093-1100. | DOI | MR | Zbl

[26] Sinclair, A. M.: Continuous derivations on Banach algebras. Proc. Am. Math. Soc. 20 (1969), 166-170. | DOI | MR | Zbl

[27] Singer, I. M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. | DOI | MR | Zbl

[28] Thomas, M. P.: The image of a derivation is contained in the radical. Ann. Math. (2) 128/3 (1988), 435-460. | MR | Zbl

[29] Wong, T. L.: Derivations with power-central values on multilinear polynomials. Algebra Colloq. 3 (1996), 369-378. | MR | Zbl

Cité par Sources :