Keywords: first Dirichlet eigenvalue; bicyclic graph; degree sequence
@article{10_1007_s10587_012_0038_1,
author = {Zhang, Guang-Jun and Zhang, Xiao-Dong},
title = {The first {Dirichlet} eigenvalue of bicyclic graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {441--451},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0038-1},
mrnumber = {2990185},
zbl = {1265.05429},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/}
}
TY - JOUR AU - Zhang, Guang-Jun AU - Zhang, Xiao-Dong TI - The first Dirichlet eigenvalue of bicyclic graphs JO - Czechoslovak Mathematical Journal PY - 2012 SP - 441 EP - 451 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/ DO - 10.1007/s10587-012-0038-1 LA - en ID - 10_1007_s10587_012_0038_1 ER -
%0 Journal Article %A Zhang, Guang-Jun %A Zhang, Xiao-Dong %T The first Dirichlet eigenvalue of bicyclic graphs %J Czechoslovak Mathematical Journal %D 2012 %P 441-451 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/ %R 10.1007/s10587-012-0038-1 %G en %F 10_1007_s10587_012_0038_1
Zhang, Guang-Jun; Zhang, Xiao-Dong. The first Dirichlet eigenvalue of bicyclic graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 441-451. doi: 10.1007/s10587-012-0038-1
[1] koğlu, T. Bıyı, Leydold, J.: Faber-Krahn type inequalities for trees. J. Comb. Theory, Ser. B 97 (2007), 159-174. | DOI | MR
[2] Friedman, J.: Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69 (1993), 487-525. | DOI | MR | Zbl
[3] Leydold, J.: The geometry of regular trees with the Faber-Krahn property. Discrete Math. 245 (2002), 155-172. | DOI | MR | Zbl
[4] Pruss, A. R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees. Duke Math. J. 91 (1998), 463-514. | DOI | MR | Zbl
[5] Zhang, G. J., Zhang, J., Zhang, X. D.: Faber-Krahn Type Inequality for Unicyclic Graphs. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2011.651722. | DOI
[6] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. | DOI | MR | Zbl
[7] Zhang, X. D.: The signless Laplacian spectral radius of graphs with given degree sequences. Discrete Appl. Math. 157 (2009), 2928-2937. | DOI | MR | Zbl
Cité par Sources :