The first Dirichlet eigenvalue of bicyclic graphs
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 441-451
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed $k$ interior vertices of degree at least 3 are obtained.
In this paper, we have investigated some properties of the first Dirichlet eigenvalue of a bicyclic graph with boundary condition. These results can be used to characterize the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicyclic graphs with a given graphic bicyclic degree sequence with minor conditions. Moreover, the extremal bicyclic graphs with the smallest first Dirichlet eigenvalue among all the bicycle graphs with fixed $k$ interior vertices of degree at least 3 are obtained.
DOI : 10.1007/s10587-012-0038-1
Classification : 05C35, 05C50
Keywords: first Dirichlet eigenvalue; bicyclic graph; degree sequence
@article{10_1007_s10587_012_0038_1,
     author = {Zhang, Guang-Jun and Zhang, Xiao-Dong},
     title = {The first {Dirichlet} eigenvalue of bicyclic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {441--451},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0038-1},
     mrnumber = {2990185},
     zbl = {1265.05429},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/}
}
TY  - JOUR
AU  - Zhang, Guang-Jun
AU  - Zhang, Xiao-Dong
TI  - The first Dirichlet eigenvalue of bicyclic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 441
EP  - 451
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/
DO  - 10.1007/s10587-012-0038-1
LA  - en
ID  - 10_1007_s10587_012_0038_1
ER  - 
%0 Journal Article
%A Zhang, Guang-Jun
%A Zhang, Xiao-Dong
%T The first Dirichlet eigenvalue of bicyclic graphs
%J Czechoslovak Mathematical Journal
%D 2012
%P 441-451
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0038-1/
%R 10.1007/s10587-012-0038-1
%G en
%F 10_1007_s10587_012_0038_1
Zhang, Guang-Jun; Zhang, Xiao-Dong. The first Dirichlet eigenvalue of bicyclic graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 441-451. doi: 10.1007/s10587-012-0038-1

[1] koğlu, T. Bıyı, Leydold, J.: Faber-Krahn type inequalities for trees. J. Comb. Theory, Ser. B 97 (2007), 159-174. | DOI | MR

[2] Friedman, J.: Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69 (1993), 487-525. | DOI | MR | Zbl

[3] Leydold, J.: The geometry of regular trees with the Faber-Krahn property. Discrete Math. 245 (2002), 155-172. | DOI | MR | Zbl

[4] Pruss, A. R.: Discrete convolution-rearrangement inequalities and the Faber-Krahn inequality on regular trees. Duke Math. J. 91 (1998), 463-514. | DOI | MR | Zbl

[5] Zhang, G. J., Zhang, J., Zhang, X. D.: Faber-Krahn Type Inequality for Unicyclic Graphs. Linear and Multilinear Algebra, DOI: 10.1080/03081087.2011.651722. | DOI

[6] Zhang, X. D.: The Laplacian spectral radii of trees with degree sequences. Discrete Math. 308 (2008), 3143-3150. | DOI | MR | Zbl

[7] Zhang, X. D.: The signless Laplacian spectral radius of graphs with given degree sequences. Discrete Appl. Math. 157 (2009), 2928-2937. | DOI | MR | Zbl

Cité par Sources :