On the Cauchy problem for linear hyperbolic functional-differential equations
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 391-440
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.
We study the question of the existence, uniqueness, and continuous dependence on parameters of the Carathéodory solutions to the Cauchy problem for linear partial functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative is also proved. The results obtained are new even in the case of equations without argument deviations, because we do not suppose absolute continuity of the function the Cauchy problem is prescribed on, which is rather usual assumption in the existing literature.
DOI : 10.1007/s10587-012-0037-2
Classification : 35A01, 35A02, 35B30, 35L10, 35L15
Keywords: functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions
@article{10_1007_s10587_012_0037_2,
     author = {Lomtatidze, Alexander and \v{S}remr, Ji\v{r}{\'\i}},
     title = {On the {Cauchy} problem for linear hyperbolic functional-differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {391--440},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0037-2},
     mrnumber = {2990184},
     zbl = {1265.35195},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/}
}
TY  - JOUR
AU  - Lomtatidze, Alexander
AU  - Šremr, Jiří
TI  - On the Cauchy problem for linear hyperbolic functional-differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 391
EP  - 440
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/
DO  - 10.1007/s10587-012-0037-2
LA  - en
ID  - 10_1007_s10587_012_0037_2
ER  - 
%0 Journal Article
%A Lomtatidze, Alexander
%A Šremr, Jiří
%T On the Cauchy problem for linear hyperbolic functional-differential equations
%J Czechoslovak Mathematical Journal
%D 2012
%P 391-440
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/
%R 10.1007/s10587-012-0037-2
%G en
%F 10_1007_s10587_012_0037_2
Lomtatidze, Alexander; Šremr, Jiří. On the Cauchy problem for linear hyperbolic functional-differential equations. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 391-440. doi: 10.1007/s10587-012-0037-2

[1] Bielawski, D.: On the set of solutions of boundary value problems for hyperbolic differential equations. J. Math. Anal. Appl. 253 (2001), 334-340. | DOI | MR | Zbl

[2] Carathéodory, C.: Vorlesungen über Reelle Funktionen. Leipzig und Berlin: B. G. Teubner (1918), German.

[3] Deimling, K.: Absolutely continuous solutions of Cauchy's problem for $u_{xy}=f(x,y,u, u_x,u_y)$. Ann. Mat. Pura Appl., IV. Ser. 89 (1971), 381-391. | DOI | MR

[4] Deimling, K.: Das Picard-Problem für $u_{xy}=f(x, y, u, u_x, u_y)$ unter Carathéodory-Voraussetzungen. Math. Z. 114 (1970), 303-312 German. | DOI | MR

[5] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. New York and London: Interscience Publishers. XIV (1958). | MR | Zbl

[6] Grigolia, M.: On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type. Mem. Differ. Equ. Math. Phys. 16 (1999), 154-158. | MR | Zbl

[7] Grigolia, M. P.: On a generalized characteristic boundary value problem for hyperbolic systems. Differ. Uravn. 21 (1985), 678-686.

[8] Kharibegashvili, S.: Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differ. Equ. Math. Phys. 4 (1995), 127 p. | MR | Zbl

[9] Kiguradze, T.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differ. Equ. Math. Phys. 1 (1994), 144 p. | MR | Zbl

[10] Kiguradze, T. I.: On periodic boundary value problems for linear hyperbolic equations. I. Differ. Equations 29 (1993), 231-245, translation from Differ. Uravn. 29 281-297 (1993). | MR

[11] Kiguradze, T. I.: Periodic boundary value problems for hyperbolic equations. II. Differ. Equations 29 (1993), 542-549, translation from Differ. Uravn. 29 637-645 (1993). | MR | Zbl

[12] Lakshmikantham, V., Pandit, S. G.: The method of upper, lower solutions and hyperbolic partial differential equations. J. Math. Anal. Appl. 105 (1985), 466-477. | DOI | MR | Zbl

[13] Mitropol'skij, Yu. A., Urmancheva, L. B.: On two-point problem for systems of hyperbolic equations. Ukr. Math. J. 42 (1990), 1492-1498, translation from Ukr. Mat. Zh. 42 1657-1663 (1990). | MR

[14] Natanson, I. P.: Theory of Functions of Real Variable. Nauka, Moscow (1974), Russian. | MR

[15] Schaefer, H. H.: Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. Isr. J. Math. 13 (1972), 400-415. | MR

[16] Šremr, J.: Absolutely continuous functions of two variables in the sense of Carathéodory. Electron J. Differ. Equ. 2010 (2010) 11 p. | MR | Zbl

[17] Tolstov, G. P.: On the mixed second derivative. Mat. Sb., N. Ser. 24 (1949), 27-51 Russian. | MR

[18] Tricomi, F. G.: Lezioni Sulle Equazioni a Derivate Parziali. Corso di Analisi Superiore. Editrice Gheroni, Torino (1954), Italian. | MR | Zbl

[19] Vejvoda, O.: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I. Czech. Math. J. 14 (1964), 341-382. | MR

[20] al., O. Vejvoda et: Partial Differential Equations. SNTL, Praha (1981).

[21] Walczak, S.: Absolutely continuous functions of several variables and their application to differential equations. Bull. Pol. Acad. Sci., Math. 35 (1987), 733-744. | MR | Zbl

[22] Walter, W.: Differential and Integral Inequalities. Translated by Lisa Rosenblatt and Lawrence Shampine. Ergebnisse der Mathematik und ihrer Grenzgebiege. Band 55. Berlin-Heidelberg-New York: Springer-Verlag (1970). | MR | Zbl

Cité par Sources :