Keywords: functional-differential equation of hyperbolic type; Cauchy problem; Fredholm alternative; well-posedness; existence of solutions
@article{10_1007_s10587_012_0037_2,
author = {Lomtatidze, Alexander and \v{S}remr, Ji\v{r}{\'\i}},
title = {On the {Cauchy} problem for linear hyperbolic functional-differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {391--440},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0037-2},
mrnumber = {2990184},
zbl = {1265.35195},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/}
}
TY - JOUR AU - Lomtatidze, Alexander AU - Šremr, Jiří TI - On the Cauchy problem for linear hyperbolic functional-differential equations JO - Czechoslovak Mathematical Journal PY - 2012 SP - 391 EP - 440 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/ DO - 10.1007/s10587-012-0037-2 LA - en ID - 10_1007_s10587_012_0037_2 ER -
%0 Journal Article %A Lomtatidze, Alexander %A Šremr, Jiří %T On the Cauchy problem for linear hyperbolic functional-differential equations %J Czechoslovak Mathematical Journal %D 2012 %P 391-440 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0037-2/ %R 10.1007/s10587-012-0037-2 %G en %F 10_1007_s10587_012_0037_2
Lomtatidze, Alexander; Šremr, Jiří. On the Cauchy problem for linear hyperbolic functional-differential equations. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 391-440. doi: 10.1007/s10587-012-0037-2
[1] Bielawski, D.: On the set of solutions of boundary value problems for hyperbolic differential equations. J. Math. Anal. Appl. 253 (2001), 334-340. | DOI | MR | Zbl
[2] Carathéodory, C.: Vorlesungen über Reelle Funktionen. Leipzig und Berlin: B. G. Teubner (1918), German.
[3] Deimling, K.: Absolutely continuous solutions of Cauchy's problem for $u_{xy}=f(x,y,u, u_x,u_y)$. Ann. Mat. Pura Appl., IV. Ser. 89 (1971), 381-391. | DOI | MR
[4] Deimling, K.: Das Picard-Problem für $u_{xy}=f(x, y, u, u_x, u_y)$ unter Carathéodory-Voraussetzungen. Math. Z. 114 (1970), 303-312 German. | DOI | MR
[5] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory. New York and London: Interscience Publishers. XIV (1958). | MR | Zbl
[6] Grigolia, M.: On the existence and uniqueness of solutions of the Goursat problem for systems of functional partial differential equations of hyperbolic type. Mem. Differ. Equ. Math. Phys. 16 (1999), 154-158. | MR | Zbl
[7] Grigolia, M. P.: On a generalized characteristic boundary value problem for hyperbolic systems. Differ. Uravn. 21 (1985), 678-686.
[8] Kharibegashvili, S.: Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems. Mem. Differ. Equ. Math. Phys. 4 (1995), 127 p. | MR | Zbl
[9] Kiguradze, T.: Some boundary value problems for systems of linear partial differential equations of hyperbolic type. Mem. Differ. Equ. Math. Phys. 1 (1994), 144 p. | MR | Zbl
[10] Kiguradze, T. I.: On periodic boundary value problems for linear hyperbolic equations. I. Differ. Equations 29 (1993), 231-245, translation from Differ. Uravn. 29 281-297 (1993). | MR
[11] Kiguradze, T. I.: Periodic boundary value problems for hyperbolic equations. II. Differ. Equations 29 (1993), 542-549, translation from Differ. Uravn. 29 637-645 (1993). | MR | Zbl
[12] Lakshmikantham, V., Pandit, S. G.: The method of upper, lower solutions and hyperbolic partial differential equations. J. Math. Anal. Appl. 105 (1985), 466-477. | DOI | MR | Zbl
[13] Mitropol'skij, Yu. A., Urmancheva, L. B.: On two-point problem for systems of hyperbolic equations. Ukr. Math. J. 42 (1990), 1492-1498, translation from Ukr. Mat. Zh. 42 1657-1663 (1990). | MR
[14] Natanson, I. P.: Theory of Functions of Real Variable. Nauka, Moscow (1974), Russian. | MR
[15] Schaefer, H. H.: Normed tensor products of Banach lattices. Proc. internat. Sympos. partial diff. Equ. Geometry normed lin. Spaces II. Isr. J. Math. 13 (1972), 400-415. | MR
[16] Šremr, J.: Absolutely continuous functions of two variables in the sense of Carathéodory. Electron J. Differ. Equ. 2010 (2010) 11 p. | MR | Zbl
[17] Tolstov, G. P.: On the mixed second derivative. Mat. Sb., N. Ser. 24 (1949), 27-51 Russian. | MR
[18] Tricomi, F. G.: Lezioni Sulle Equazioni a Derivate Parziali. Corso di Analisi Superiore. Editrice Gheroni, Torino (1954), Italian. | MR | Zbl
[19] Vejvoda, O.: Periodic solutions of a linear and weakly nonlinear wave equation in one dimension. I. Czech. Math. J. 14 (1964), 341-382. | MR
[20] al., O. Vejvoda et: Partial Differential Equations. SNTL, Praha (1981).
[21] Walczak, S.: Absolutely continuous functions of several variables and their application to differential equations. Bull. Pol. Acad. Sci., Math. 35 (1987), 733-744. | MR | Zbl
[22] Walter, W.: Differential and Integral Inequalities. Translated by Lisa Rosenblatt and Lawrence Shampine. Ergebnisse der Mathematik und ihrer Grenzgebiege. Band 55. Berlin-Heidelberg-New York: Springer-Verlag (1970). | MR | Zbl
Cité par Sources :