A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
DOI : 10.1007/s10587-012-0036-3
Classification : 11D61
Keywords: generalized Ramanujan-Nagell equation; number of solution; upper bound
@article{10_1007_s10587_012_0036_3,
     author = {Zhao, Yuan-e and Wang, Tingting},
     title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x^2-D=p^n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {381--389},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0036-3},
     mrnumber = {2990183},
     zbl = {1265.11066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/}
}
TY  - JOUR
AU  - Zhao, Yuan-e
AU  - Wang, Tingting
TI  - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 381
EP  - 389
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/
DO  - 10.1007/s10587-012-0036-3
LA  - en
ID  - 10_1007_s10587_012_0036_3
ER  - 
%0 Journal Article
%A Zhao, Yuan-e
%A Wang, Tingting
%T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$
%J Czechoslovak Mathematical Journal
%D 2012
%P 381-389
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/
%R 10.1007/s10587-012-0036-3
%G en
%F 10_1007_s10587_012_0036_3
Zhao, Yuan-e; Wang, Tingting. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389. doi: 10.1007/s10587-012-0036-3

[1] Bauer, M., Bennett, M. A.: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209-270. | DOI | MR | Zbl

[2] Beukers, F.: On the generalized Ramanujan-Nagell equation II. Acta Arith. 39 (1981), 113-123. | DOI | MR | Zbl

[3] Le, M. H.: On the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Acta Arith. 58 (1991), 289-298. | DOI | MR

[4] Le, M. H.: On the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Publ. Math. Debrecen. 45 (1994), 239-254. | MR

[5] Le, M. H.: Upper bounds for class numbers of real quadratic fields. Acta Arith. 68 (1994), 141-144. | DOI | MR | Zbl

[6] Mordell, L. J.: Diophantine Equations. London, Academic Press. (1969). | MR | Zbl

[7] Siegel, C. L.: Approximation algebraischer Zahlen. Diss. Göttingen, Math. Zeitschr. 10 (1921), 173-213 German. | DOI | MR

Cité par Sources :