Keywords: generalized Ramanujan-Nagell equation; number of solution; upper bound
@article{10_1007_s10587_012_0036_3,
author = {Zhao, Yuan-e and Wang, Tingting},
title = {A note on the number of solutions of the generalized {Ramanujan-Nagell} equation $x^2-D=p^n$},
journal = {Czechoslovak Mathematical Journal},
pages = {381--389},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0036-3},
mrnumber = {2990183},
zbl = {1265.11066},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/}
}
TY - JOUR AU - Zhao, Yuan-e AU - Wang, Tingting TI - A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 381 EP - 389 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/ DO - 10.1007/s10587-012-0036-3 LA - en ID - 10_1007_s10587_012_0036_3 ER -
%0 Journal Article %A Zhao, Yuan-e %A Wang, Tingting %T A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$ %J Czechoslovak Mathematical Journal %D 2012 %P 381-389 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0036-3/ %R 10.1007/s10587-012-0036-3 %G en %F 10_1007_s10587_012_0036_3
Zhao, Yuan-e; Wang, Tingting. A note on the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 381-389. doi: 10.1007/s10587-012-0036-3
[1] Bauer, M., Bennett, M. A.: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209-270. | DOI | MR | Zbl
[2] Beukers, F.: On the generalized Ramanujan-Nagell equation II. Acta Arith. 39 (1981), 113-123. | DOI | MR | Zbl
[3] Le, M. H.: On the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Acta Arith. 58 (1991), 289-298. | DOI | MR
[4] Le, M. H.: On the number of solutions of the generalized Ramanujan-Nagell equation $x^2-D=p^n$. Publ. Math. Debrecen. 45 (1994), 239-254. | MR
[5] Le, M. H.: Upper bounds for class numbers of real quadratic fields. Acta Arith. 68 (1994), 141-144. | DOI | MR | Zbl
[6] Mordell, L. J.: Diophantine Equations. London, Academic Press. (1969). | MR | Zbl
[7] Siegel, C. L.: Approximation algebraischer Zahlen. Diss. Göttingen, Math. Zeitschr. 10 (1921), 173-213 German. | DOI | MR
Cité par Sources :