On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 361-379
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0
Let $E=\bigcup _{n=1}^{\infty }I_{n}$ be the union of infinitely many disjoint closed intervals where $I_{n}=[a_{n}$, $b_{n}]$, $0$, $\lim _{n\rightarrow \infty }b_{n}=\infty .$ Let $\alpha (t)$ be a nonnegative function and $\{\lambda _{n}\}_{n=1}^{\infty }$ a sequence of distinct complex numbers. In this paper, a theorem on the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$ is obtained where $C_{0}(E)$ is the weighted Banach space consists of complex functions continuous on $E$ with $f(t){\rm e}^{-\alpha (t)}$ vanishing at infinity.
DOI : 10.1007/s10587-012-0035-4
Classification : 30B60, 30E10, 41A10
Keywords: completeness; Banach space; complex Müntz theorem
@article{10_1007_s10587_012_0035_4,
     author = {Yang, Xiangdong},
     title = {On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {361--379},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0035-4},
     mrnumber = {2990182},
     zbl = {1265.30177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0035-4/}
}
TY  - JOUR
AU  - Yang, Xiangdong
TI  - On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 361
EP  - 379
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0035-4/
DO  - 10.1007/s10587-012-0035-4
LA  - en
ID  - 10_1007_s10587_012_0035_4
ER  - 
%0 Journal Article
%A Yang, Xiangdong
%T On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$
%J Czechoslovak Mathematical Journal
%D 2012
%P 361-379
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0035-4/
%R 10.1007/s10587-012-0035-4
%G en
%F 10_1007_s10587_012_0035_4
Yang, Xiangdong. On the completeness of the system $\{t^{\lambda _{n}}\log ^{m_{n}}t\}$ in $C_{0}(E)$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 361-379. doi: 10.1007/s10587-012-0035-4

[1] Boivin, A., Zhu, Ch.: On the completeness of the system $\{z^{\tau_{n}}\}$ in $L^{2}$. J. Approximation Theory 118 (2002), 1-19. | MR

[2] Borichev, A. A., Sodin, M.: Krein's entire functions and the Bernstein approximation problem. Ill. J. Math. 45 (2001), 167-185. | DOI | MR | Zbl

[3] Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Springer-Verlag, New York (1995). | MR | Zbl

[4] Branges, L. de: The Bernstein problem. Proc. Am. Math. Soc. 10 (1959), 825-832. | DOI | MR | Zbl

[5] Deng, G. T.: Incompleteness and closure of a linear span of exponential system in a weighted Banach space. J. Approximation Theory 125 (2003), 1-9. | DOI | MR | Zbl

[6] Deng, G. T.: On weighted polynomial approximation with gaps. Nagoya Math. J. 178 (2005), 55-61. | DOI | MR | Zbl

[7] Deng, G. T.: Incompleteness and minimality of complex exponential system. Sci. China, Ser. A 50 (2007), 1467-1476. | DOI | MR | Zbl

[8] Halmos, P. R.: Measure Theory, 2nd printing, Graduate Texts in Mathematics. 18. Springer-Verlag, New York-Heidelberg-Berlin (1974). | MR

[9] Izumi, S.-I., Kawata, T.: Quasi-analytic class and closure of $\{t^{n}\}$ in the interval $(-\infty, \infty)$. Tohoku Math. J. 43 (1937), 267-273.

[10] Levin, B. Y.: Lectures on Entire Functions, Translations of Mathematical Monographs, 150. Providence RI., American Mathematical Society (1996). | DOI | MR

[11] Malliavin, P.: Sur quelques procédés d'extrapolation. Acta Math. 83 (1955), 179-255. | DOI | MR | Zbl

[12] Mergelyan, S. N.: On the completeness of system of analytic functions. Amer. Math. Soc. Transl. Ser. 2 (1962), 109-166. | MR

[13] Markushevich, A. I.: Theory of Functions of a Complex Variable, Selected Russian Publications in the Mathematical Sciences. Prentice-Hall (1965).

[14] Rudin, W.: Real and Complex Analysis, 3rd. ed. McGraw-Hill, New York (1987). | MR | Zbl

[15] Sedletskij, A. M.: Nonharmonic analysis. J. Math. Sci., New York 116 (2003), 3551-3619. | MR | Zbl

[16] Shen, X.: On the closure $\{ z^{\tau_{n}}\log^{j} z\} $ in a domain of the complex plane. Acta Math. Sinica 13 (1963), 405-418 Chinese Chinese Math. 4 (1963), 440-453 English.

[17] Shen, X.: On the completeness of $\{ z^{\tau_{n}}\log^{j} z\} $ on an unbounded curve of the complex plane. Acta Math. Sinica 13 (1963), 170-192 Chinese Chinese Math. 12 (1963), 921-950 English.

[18] Shen, X.: On approximation of functions in the complex plane by the system of functions $\{ z^{\tau_{n}}\log^{j} z\} $. Acta Math. Sinica 14 (1964), 406-414 Chinese Chinese Math. 5 (1965), 439-446 English. | MR

[19] Yang, X. D.: Incompleteness of exponential system in the weighted Banach space. J. Approx. Theory 153 (2008), 73-79. | DOI | MR | Zbl

[20] Zhu, Ch.: Some Results in Complex Approximation with Sequence of Complex Exponents. Thesis of the University of Werstern Ontario, Canada (1999).

[21] Zikkos, E.: On a theorem of normal Levinson and a variation of the Fabry gap theorem. Complex Variables, Theory Appl. 50 (2005), 229-255. | DOI | MR

Cité par Sources :