Keywords: simple algebra; idempotent; group
@article{10_1007_s10587_012_0032_7,
author = {Je\v{z}ek, Jaroslav},
title = {Definability for equational theories of commutative groupoids},
journal = {Czechoslovak Mathematical Journal},
pages = {305--333},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0032-7},
mrnumber = {2990179},
zbl = {1265.08013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0032-7/}
}
TY - JOUR AU - Ježek, Jaroslav TI - Definability for equational theories of commutative groupoids JO - Czechoslovak Mathematical Journal PY - 2012 SP - 305 EP - 333 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0032-7/ DO - 10.1007/s10587-012-0032-7 LA - en ID - 10_1007_s10587_012_0032_7 ER -
Ježek, Jaroslav. Definability for equational theories of commutative groupoids. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 305-333. doi: 10.1007/s10587-012-0032-7
[1] Grech, M.: Irreducible varieties of commutative semigroups. J. Algebra 261 (2003), 207-228. | DOI | MR | Zbl
[2] Grech, M.: Automorphism of the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 361 (2009), 3435-3462. | DOI | MR
[3] Ježek, J.: The lattice of equational theories. Part I: Modular elements. Czech. Math. J. 31 (1981), 127-152. | MR
[4] Ježek, J.: The lattice of equational theories. Part II: The lattice of full sets of terms. Czech. Math. J. 31 (1981), 573-603. | MR
[5] Ježek, J.: The lattice of equational theories. Part III: Definability and automorphisms. Czech. Math. J. 32 (1982), 129-164. | MR
[6] Ježek, J.: The lattice of equational theories. Part IV: Equational theories of finite algebras. Czech. Math. J. 36 (1986), 331-341. | MR
[7] Ježek, J.: The ordering of commutative terms. Czech. Math. J. 56 (2006), 133-154. | DOI | MR | Zbl
[8] Ježek, J., McKenzie, R.: Definability in the lattice of equational theories of semigroups. Semigroup Forum 46 (1993), 199-245. | DOI | MR | Zbl
[9] Kisielewicz, A.: Definability in the lattice of equational theories of commutative semigroups. Trans. Am. Math. Soc. 356 (2004), 3483-3504. | DOI | MR | Zbl
[10] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Volume I. Wadsworth & Brooks/Cole Monterey (1987). | MR | Zbl
[11] Tarski, A.: Equational logic and equational theories of algebras. Proc. Logic Colloq., Hannover 1966. Contrib. Math. Logic (1968), 275-288. | MR
[12] Vernikov, B. M.: Proofs of definability of some varieties and sets of varieties of semigroups. Preprint. | MR
Cité par Sources :