Lower bound and upper bound of operators on block weighted sequence spaces
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 293-304
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A=(a_{n,k})_{n,k\geq 1}$ be a non-negative matrix. Denote by $L_{v,p,q,F}(A)$ the supremum of those $L$ that satisfy the inequality $$ \|Ax\|_{v,q,F} \ge L\| x\|_{v,p,F}, $$ where $x\geq 0$ and $x\in l_p(v,F)$ and also $v=(v_n)_{n=1}^\infty $ is an increasing, non-negative sequence of real numbers. If $p=q$, we use $L_{v,p,F}(A)$ instead of $L_{v,p,p,F}(A)$. In this paper we obtain a Hardy type formula for $L_{v,p,q,F}(H_\mu )$, where $H_\mu $ is a Hausdorff matrix and $0$. Another purpose of this paper is to establish a lower bound for $\|A_{W}^{NM} \|_{v,p,F}$, where $A_{W}^{NM}$ is the Nörlund matrix associated with the sequence $W=\{w_n\}_{n=1}^\infty $ and $1$. Our results generalize some works of Bennett, Jameson and present authors.
DOI :
10.1007/s10587-012-0031-8
Classification :
26D15, 40G05, 46A45, 47A30, 54D55
Keywords: lower bound; weighted sequence space; Hausdorff matrices; Euler matrices; Cesàro matrices; Hölder matrices; Gamma matrices
Keywords: lower bound; weighted sequence space; Hausdorff matrices; Euler matrices; Cesàro matrices; Hölder matrices; Gamma matrices
@article{10_1007_s10587_012_0031_8,
author = {Lashkaripour, Rahmatollah and Talebi, Gholomraza},
title = {Lower bound and upper bound of operators on block weighted sequence spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {293--304},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {2012},
doi = {10.1007/s10587-012-0031-8},
mrnumber = {2990178},
zbl = {1265.26074},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/}
}
TY - JOUR AU - Lashkaripour, Rahmatollah AU - Talebi, Gholomraza TI - Lower bound and upper bound of operators on block weighted sequence spaces JO - Czechoslovak Mathematical Journal PY - 2012 SP - 293 EP - 304 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/ DO - 10.1007/s10587-012-0031-8 LA - en ID - 10_1007_s10587_012_0031_8 ER -
%0 Journal Article %A Lashkaripour, Rahmatollah %A Talebi, Gholomraza %T Lower bound and upper bound of operators on block weighted sequence spaces %J Czechoslovak Mathematical Journal %D 2012 %P 293-304 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/ %R 10.1007/s10587-012-0031-8 %G en %F 10_1007_s10587_012_0031_8
Lashkaripour, Rahmatollah; Talebi, Gholomraza. Lower bound and upper bound of operators on block weighted sequence spaces. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 293-304. doi: 10.1007/s10587-012-0031-8
Cité par Sources :