Lower bound and upper bound of operators on block weighted sequence spaces
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 293-304.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A=(a_{n,k})_{n,k\geq 1}$ be a non-negative matrix. Denote by $L_{v,p,q,F}(A)$ the supremum of those $L$ that satisfy the inequality $$ \|Ax\|_{v,q,F} \ge L\| x\|_{v,p,F}, $$ where $x\geq 0$ and $x\in l_p(v,F)$ and also $v=(v_n)_{n=1}^\infty $ is an increasing, non-negative sequence of real numbers. If $p=q$, we use $L_{v,p,F}(A)$ instead of $L_{v,p,p,F}(A)$. In this paper we obtain a Hardy type formula for $L_{v,p,q,F}(H_\mu )$, where $H_\mu $ is a Hausdorff matrix and $0$. Another purpose of this paper is to establish a lower bound for $\|A_{W}^{NM} \|_{v,p,F}$, where $A_{W}^{NM}$ is the Nörlund matrix associated with the sequence $W=\{w_n\}_{n=1}^\infty $ and $1$. Our results generalize some works of Bennett, Jameson and present authors.
DOI : 10.1007/s10587-012-0031-8
Classification : 26D15, 40G05, 46A45, 47A30, 54D55
Keywords: lower bound; weighted sequence space; Hausdorff matrices; Euler matrices; Cesàro matrices; Hölder matrices; Gamma matrices
@article{10_1007_s10587_012_0031_8,
     author = {Lashkaripour, Rahmatollah and Talebi, Gholomraza},
     title = {Lower bound and upper bound of operators on block weighted sequence spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {293--304},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2012},
     doi = {10.1007/s10587-012-0031-8},
     mrnumber = {2990178},
     zbl = {1265.26074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/}
}
TY  - JOUR
AU  - Lashkaripour, Rahmatollah
AU  - Talebi, Gholomraza
TI  - Lower bound and upper bound of operators on block weighted sequence spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 293
EP  - 304
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/
DO  - 10.1007/s10587-012-0031-8
LA  - en
ID  - 10_1007_s10587_012_0031_8
ER  - 
%0 Journal Article
%A Lashkaripour, Rahmatollah
%A Talebi, Gholomraza
%T Lower bound and upper bound of operators on block weighted sequence spaces
%J Czechoslovak Mathematical Journal
%D 2012
%P 293-304
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/
%R 10.1007/s10587-012-0031-8
%G en
%F 10_1007_s10587_012_0031_8
Lashkaripour, Rahmatollah; Talebi, Gholomraza. Lower bound and upper bound of operators on block weighted sequence spaces. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 293-304. doi : 10.1007/s10587-012-0031-8. http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0031-8/

Cité par Sources :