Keywords: graph; adjacency matrix; Laplacian matrix; spectral radius; bound
@article{10_1007_s10587_012_0030_9,
author = {Tian, Gui-Xian and Huang, Ting-Zhu},
title = {Bounds for the {(Laplacian)} spectral radius of graphs with parameter $\alpha $},
journal = {Czechoslovak Mathematical Journal},
pages = {567--580},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0030-9},
mrnumber = {2990195},
zbl = {1265.05418},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0030-9/}
}
TY - JOUR AU - Tian, Gui-Xian AU - Huang, Ting-Zhu TI - Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 567 EP - 580 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0030-9/ DO - 10.1007/s10587-012-0030-9 LA - en ID - 10_1007_s10587_012_0030_9 ER -
%0 Journal Article %A Tian, Gui-Xian %A Huang, Ting-Zhu %T Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $ %J Czechoslovak Mathematical Journal %D 2012 %P 567-580 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0030-9/ %R 10.1007/s10587-012-0030-9 %G en %F 10_1007_s10587_012_0030_9
Tian, Gui-Xian; Huang, Ting-Zhu. Bounds for the (Laplacian) spectral radius of graphs with parameter $\alpha $. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 567-580. doi: 10.1007/s10587-012-0030-9
[1] Berman, A., Zhang, X.-D.: On the spectral radius of graphs with cut vertices. J. Combin. Theory, Ser. B 83 (2001), 233-240. | DOI | MR | Zbl
[2] Brankov, V., Hansen, P., Stevanović, D.: Automated cunjectures on upper bounds for the largest Laplacian eigenvalue of graphs. Linear Algebra Appl. 414 (2006), 407-424. | MR
[3] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Application. Deutscher Verlag der Wissenschaften Berlin (1980). | MR | Zbl
[4] Das, K. C., Kumar, P.: Some new bounds on the spectral radius of graphs. Discrete Math. 281 (2004), 149-161. | DOI | MR | Zbl
[5] Favaron, O., Mahéo, M., Saclé, J.-F.: Some eigenvalue properties in graphs (Conjectures of Graffiti---II). Discrete Math. 111 (1993), 197-220. | DOI | MR | Zbl
[6] Hofmeister, M.: Spectral radius and degree sequence. Math. Nachr. 139 (1988), 37-44. | DOI | MR | Zbl
[7] Hong, Y., Zhang, X.-D.: Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees. Discrete Math. 296 (2005), 187-197. | DOI | MR | Zbl
[8] Liu, H., Lu, M.: Bounds for the Laplacian spectral radius of graphs. Linear Multilinear Algebra 58 (2010), 113-119. | DOI | MR | Zbl
[9] Liu, H., Lu, M., Tian, F.: Some upper bounds for the energy of graphs. J. Math. Chem. 41 (2007), 45-57. | DOI | MR | Zbl
[10] Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326 (2007), 1472-1475. | DOI | MR | Zbl
[11] Shi, L.: Bounds on the (Laplacian) spectral radius of graphs. Linear Algebra Appl. 422 (2007), 755-770. | DOI | MR | Zbl
[12] Tian, G.-X., Huang, T.-Z., Zhou, B.: A note on sum of powers of the Laplacian eigenvalues of bipartite graphs. Linear Algebra Appl. 430 (2009), 2503-2510. | MR | Zbl
[13] Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs. Linear Algebra Appl. 387 (2004), 41-49. | DOI | MR | Zbl
[14] Yu, A., Lu, M., Tian, F.: New upper bounds for the energy of graphs. MATCH Commun. Math. Comput. Chem. 53 (2005), 441-448. | MR | Zbl
[15] Zhou, B.: Energy of a graph. MATCH Commun. Math. Comput. Chem. 51 (2004), 111-118. | MR | Zbl
Cité par Sources :