Keywords: $q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem
@article{10_1007_s10587_012_0029_2,
author = {Mahmudov, Nazim I.},
title = {Approximation properties of bivariate complex $q${-Bernstein} polynomials in the case $q>1$},
journal = {Czechoslovak Mathematical Journal},
pages = {557--566},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0029-2},
mrnumber = {2990194},
zbl = {1265.33036},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/}
}
TY - JOUR AU - Mahmudov, Nazim I. TI - Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 557 EP - 566 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/ DO - 10.1007/s10587-012-0029-2 LA - en ID - 10_1007_s10587_012_0029_2 ER -
%0 Journal Article %A Mahmudov, Nazim I. %T Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$ %J Czechoslovak Mathematical Journal %D 2012 %P 557-566 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/ %R 10.1007/s10587-012-0029-2 %G en %F 10_1007_s10587_012_0029_2
Mahmudov, Nazim I. Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 557-566. doi: 10.1007/s10587-012-0029-2
[1] Butzer, P. L.: On two-dimensional Bernstein polynomials. Can. J. Math. 5 (1953), 107-113. | DOI | MR | Zbl
[2] Gal, S. G.: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific New York (2009). | MR
[3] Hildebrandt, T. H., Schoenberg, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions. Ann. Math. 34 (1933), 317-328. | DOI | MR | Zbl
[4] Mahmudov, N. I.: Korovkin-type theorems and applications. Cent. Eur. J. Math. 7 (2009), 348-356. | DOI | MR | Zbl
[5] Ostrovska, S.: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232-255. | DOI | MR | Zbl
[6] Ostrovska, S.: The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$. Czech. Math. J. 58 (2008), 1195-1206. | DOI | MR | Zbl
[7] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. | MR | Zbl
[8] Wang, H., Wu, X.: Saturation of convergence for $q$-Bernstein polynomials in the case $q>1$. J. Math. Anal. Appl. 337 (2008), 744-750. | DOI | MR
[9] Wu, Z.: The saturation of convergence on the interval $[0;1]$ for the $q$-Bernstein polynomials in the case $q>1$. J. Math. Anal. Appl. 357 (2009), 137-141. | DOI | MR | Zbl
Cité par Sources :