Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 557-566 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_{R_{1}}\times D_{R_{2}}=\{z\in C\colon \vert z\vert 1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.
In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate $q$-Bernstein polynomials for a function analytic in the polydisc $D_{R_{1}}\times D_{R_{2}}=\{z\in C\colon \vert z\vert $ for arbitrary fixed $q>1$. We give quantitative Voronovskaja type estimates for the bivariate $q$-Bernstein polynomials for $q>1$. In the univariate case the similar results were obtained by S. Ostrovska: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255. and S. G. Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.
DOI : 10.1007/s10587-012-0029-2
Classification : 33D15, 41A10, 41A35
Keywords: $q$-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem
@article{10_1007_s10587_012_0029_2,
     author = {Mahmudov, Nazim I.},
     title = {Approximation properties of bivariate complex $q${-Bernstein} polynomials in the case $q>1$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {557--566},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0029-2},
     mrnumber = {2990194},
     zbl = {1265.33036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/}
}
TY  - JOUR
AU  - Mahmudov, Nazim I.
TI  - Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 557
EP  - 566
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/
DO  - 10.1007/s10587-012-0029-2
LA  - en
ID  - 10_1007_s10587_012_0029_2
ER  - 
%0 Journal Article
%A Mahmudov, Nazim I.
%T Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$
%J Czechoslovak Mathematical Journal
%D 2012
%P 557-566
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0029-2/
%R 10.1007/s10587-012-0029-2
%G en
%F 10_1007_s10587_012_0029_2
Mahmudov, Nazim I. Approximation properties of bivariate complex $q$-Bernstein polynomials in the case $q>1$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 557-566. doi: 10.1007/s10587-012-0029-2

[1] Butzer, P. L.: On two-dimensional Bernstein polynomials. Can. J. Math. 5 (1953), 107-113. | DOI | MR | Zbl

[2] Gal, S. G.: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific New York (2009). | MR

[3] Hildebrandt, T. H., Schoenberg, I. J.: On linear functional operations and the moment problem for a finite interval in one or several dimensions. Ann. Math. 34 (1933), 317-328. | DOI | MR | Zbl

[4] Mahmudov, N. I.: Korovkin-type theorems and applications. Cent. Eur. J. Math. 7 (2009), 348-356. | DOI | MR | Zbl

[5] Ostrovska, S.: $q$-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232-255. | DOI | MR | Zbl

[6] Ostrovska, S.: The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$. Czech. Math. J. 58 (2008), 1195-1206. | DOI | MR | Zbl

[7] Phillips, G. M.: Bernstein polynomials based on the $q$-integers. Ann. Numer. Math. 4 (1997), 511-518. | MR | Zbl

[8] Wang, H., Wu, X.: Saturation of convergence for $q$-Bernstein polynomials in the case $q>1$. J. Math. Anal. Appl. 337 (2008), 744-750. | DOI | MR

[9] Wu, Z.: The saturation of convergence on the interval $[0;1]$ for the $q$-Bernstein polynomials in the case $q>1$. J. Math. Anal. Appl. 357 (2009), 137-141. | DOI | MR | Zbl

Cité par Sources :