Keywords: iteration digraph; height; Carmichael lambda function; fixed point; regular digraph
@article{10_1007_s10587_012_0028_3,
author = {Ahmad, Uzma and Syed, Husnine},
title = {On the heights of power digraphs modulo $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {541--556},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0028-3},
mrnumber = {2990193},
zbl = {1265.05274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0028-3/}
}
TY - JOUR AU - Ahmad, Uzma AU - Syed, Husnine TI - On the heights of power digraphs modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 541 EP - 556 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0028-3/ DO - 10.1007/s10587-012-0028-3 LA - en ID - 10_1007_s10587_012_0028_3 ER -
Ahmad, Uzma; Syed, Husnine. On the heights of power digraphs modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 541-556. doi: 10.1007/s10587-012-0028-3
[1] Burton, D. M.: Elementary Number Theory. McGraw-Hill (2007). | MR
[2] Carlip, W., Mincheva, M.: Symmetry of iteration graphs. Czech. Math. J. 58 (2008), 131-145. | DOI | MR | Zbl
[3] Carmichael, R. D.: Note on a new number theory function. Am. Math. Soc. Bull. 16 (1910), 232-238. | DOI | MR
[4] Chartrand, G., Oellermann, O. R.: Applied and Algorithmic Graph Theory. International Series in Pure and Applied Mathematics McGraw-Hill (1993) \MR 1211413. | MR
[5] Deo, N.: Graph theory with Application to Engineering and Computer Sciences. Prentice-Hall Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1974). | MR
[6] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., Woodhull, G.: Graphviz--open source graph drawing tools. Mutzel, Petra (ed.) et al., Graph drawing. 9th international symposium, GD 2001, Vienna, Austria, September 23-26, 2001 Revised papers. Berlin: Springer. Lect. Notes Comput. Sci. 2265 (2002), 483-484. | MR | Zbl
[7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs. Util. Math. 85 (2011), 257-271. | MR
[8] Kramer-Miller, J.: Structural properties of power digraphs modulo $n$. Proceedings of the 2009 Midstates Conference on Undergraduate Research in Computer Science and Mathematics, Oberlin, Ohio (2009), 40-49.
[9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$. Fibonacci Q. 34 (1996), 226-239. | MR | Zbl
[10] Somer, L., Křížek, M.: On a connection of number theory with graph theory. Czech. Math. J. 54 (2004), 465-485. | DOI | MR
[11] Somer, L., Křížek, M.: Structure of digraphs associated with quadratic congruences with composite moduli. Discrete Math. 306 (2006), 2174-2185. | DOI | MR
[12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^{k}\equiv y \pmod n$. Commentat. Math. Univ. Carol. 48 (2007), 41-58. | MR
[13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^{k}\equiv y \pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR
[14] Wilson, B.: Power digraphs modulo $n$. Fibonacci Q. 36 (1998), 229-239. | MR | Zbl
[15] MATLAB, The language of technical computing (version 7.0.0.19920 (R14)).
Cité par Sources :