Keywords: cubic mapping graph; cycle; height
@article{10_1007_s10587_012_0027_4,
author = {Wei, Yangjiang and Nan, Jizhu and Tang, Gaohua},
title = {Structure of cubic mapping graphs for the ring of {Gaussian} integers modulo $n$},
journal = {Czechoslovak Mathematical Journal},
pages = {527--539},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0027-4},
mrnumber = {2990192},
zbl = {1261.05037},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/}
}
TY - JOUR AU - Wei, Yangjiang AU - Nan, Jizhu AU - Tang, Gaohua TI - Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$ JO - Czechoslovak Mathematical Journal PY - 2012 SP - 527 EP - 539 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/ DO - 10.1007/s10587-012-0027-4 LA - en ID - 10_1007_s10587_012_0027_4 ER -
%0 Journal Article %A Wei, Yangjiang %A Nan, Jizhu %A Tang, Gaohua %T Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$ %J Czechoslovak Mathematical Journal %D 2012 %P 527-539 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/ %R 10.1007/s10587-012-0027-4 %G en %F 10_1007_s10587_012_0027_4
Wei, Yangjiang; Nan, Jizhu; Tang, Gaohua. Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 527-539. doi: 10.1007/s10587-012-0027-4
[1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings. Commentat. Math. Univ. Carol. 47 (2006), 1-10. | MR
[2] Cross, J. T.: The Euler $\varphi$-function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518-528. | DOI | MR
[3] Meemark, Y., Wiroonsri, N.: The quadratic digraph on polynomial rings over finite fields. Finite Fields Appl. 16 (2010), 334-346. | MR
[4] Somer, L., Křížek, M.: Structure of digraphs associated with quadratic congruences with composite moduli. Discrete Math. 306 (2006), 2174-2185. | DOI | MR
[5] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k \equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR
[6] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb{Z}_n[i]$. J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.
[7] Tang, G. H., Su, H. D., Yi, Z.: Structure of the unit group of $\mathbb{Z}_n[i]$. J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41 Chinese.
[8] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers. Ars Combin. 97 (2010), 101-110 \MR 2732885. | MR
[9] Wei, Y. J., Nan, J. Z., Tang, G. H.: The cubic mapping graph for the ring of Gaussian integers modulo $n$. Czech. Math. J. 61 (2011), 1023-1036. | DOI | MR
Cité par Sources :