Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 527-539 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathbb {Z}_n{\rm [i]}$ be the ring of Gaussian integers modulo $n$. We construct for $\mathbb {Z}_n{\rm [i]}$ a cubic mapping graph $\Gamma (n)$ whose vertex set is all the elements of\/ $\mathbb {Z}_n{\rm [i]}$ and for which there is a directed edge from $a \in \mathbb {Z}_n{\rm [i]}$ to $b \in \mathbb {Z}_n{\rm [i]}$ if $ b = a^3$. This article investigates in detail the structure of $\Gamma (n)$. We give suffcient and necessary conditions for the existence of cycles with length $t$. The number of $t$-cycles in $\Gamma _1(n)$ is obtained and we also examine when a vertex lies on a $t$-cycle of $\Gamma _2(n)$, where $\Gamma _1(n)$ is induced by all the units of $\mathbb {Z}_n{\rm [i]}$ while $\Gamma _2(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n{\rm [i]}$. In addition, formulas on the heights of components and vertices in $\Gamma (n)$ are presented.
Let $\mathbb {Z}_n{\rm [i]}$ be the ring of Gaussian integers modulo $n$. We construct for $\mathbb {Z}_n{\rm [i]}$ a cubic mapping graph $\Gamma (n)$ whose vertex set is all the elements of\/ $\mathbb {Z}_n{\rm [i]}$ and for which there is a directed edge from $a \in \mathbb {Z}_n{\rm [i]}$ to $b \in \mathbb {Z}_n{\rm [i]}$ if $ b = a^3$. This article investigates in detail the structure of $\Gamma (n)$. We give suffcient and necessary conditions for the existence of cycles with length $t$. The number of $t$-cycles in $\Gamma _1(n)$ is obtained and we also examine when a vertex lies on a $t$-cycle of $\Gamma _2(n)$, where $\Gamma _1(n)$ is induced by all the units of $\mathbb {Z}_n{\rm [i]}$ while $\Gamma _2(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n{\rm [i]}$. In addition, formulas on the heights of components and vertices in $\Gamma (n)$ are presented.
DOI : 10.1007/s10587-012-0027-4
Classification : 05C05, 11A07, 13M05
Keywords: cubic mapping graph; cycle; height
@article{10_1007_s10587_012_0027_4,
     author = {Wei, Yangjiang and Nan, Jizhu and Tang, Gaohua},
     title = {Structure of cubic mapping graphs for the ring of {Gaussian} integers modulo $n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {527--539},
     year = {2012},
     volume = {62},
     number = {2},
     doi = {10.1007/s10587-012-0027-4},
     mrnumber = {2990192},
     zbl = {1261.05037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/}
}
TY  - JOUR
AU  - Wei, Yangjiang
AU  - Nan, Jizhu
AU  - Tang, Gaohua
TI  - Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 527
EP  - 539
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/
DO  - 10.1007/s10587-012-0027-4
LA  - en
ID  - 10_1007_s10587_012_0027_4
ER  - 
%0 Journal Article
%A Wei, Yangjiang
%A Nan, Jizhu
%A Tang, Gaohua
%T Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$
%J Czechoslovak Mathematical Journal
%D 2012
%P 527-539
%V 62
%N 2
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0027-4/
%R 10.1007/s10587-012-0027-4
%G en
%F 10_1007_s10587_012_0027_4
Wei, Yangjiang; Nan, Jizhu; Tang, Gaohua. Structure of cubic mapping graphs for the ring of Gaussian integers modulo $n$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 527-539. doi: 10.1007/s10587-012-0027-4

[1] Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A.: The maximal regular ideal of some commutative rings. Commentat. Math. Univ. Carol. 47 (2006), 1-10. | MR

[2] Cross, J. T.: The Euler $\varphi$-function in the Gaussian integers. Am. Math. Mon. 90 (1983), 518-528. | DOI | MR

[3] Meemark, Y., Wiroonsri, N.: The quadratic digraph on polynomial rings over finite fields. Finite Fields Appl. 16 (2010), 334-346. | MR

[4] Somer, L., Křížek, M.: Structure of digraphs associated with quadratic congruences with composite moduli. Discrete Math. 306 (2006), 2174-2185. | DOI | MR

[5] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k \equiv y\pmod n$. Discrete Math. 309 (2009), 1999-2009. | DOI | MR

[6] Su, H. D., Tang, G. H.: The prime spectrum and zero-divisors of $\mathbb{Z}_n[i]$. J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4.

[7] Tang, G. H., Su, H. D., Yi, Z.: Structure of the unit group of $\mathbb{Z}_n[i]$. J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41 Chinese.

[8] Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D.: The cubic mapping graphs of the residue classes of integers. Ars Combin. 97 (2010), 101-110 \MR 2732885. | MR

[9] Wei, Y. J., Nan, J. Z., Tang, G. H.: The cubic mapping graph for the ring of Gaussian integers modulo $n$. Czech. Math. J. 61 (2011), 1023-1036. | DOI | MR

Cité par Sources :