Keywords: regular continuous frame; perfect compactification
@article{10_1007_s10587_012_0025_6,
author = {Baboolal, Dharmanand},
title = {Conditions under which the least compactification of a regular continuous frame is perfect},
journal = {Czechoslovak Mathematical Journal},
pages = {505--515},
year = {2012},
volume = {62},
number = {2},
doi = {10.1007/s10587-012-0025-6},
mrnumber = {2990190},
zbl = {1265.06028},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0025-6/}
}
TY - JOUR AU - Baboolal, Dharmanand TI - Conditions under which the least compactification of a regular continuous frame is perfect JO - Czechoslovak Mathematical Journal PY - 2012 SP - 505 EP - 515 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0025-6/ DO - 10.1007/s10587-012-0025-6 LA - en ID - 10_1007_s10587_012_0025_6 ER -
%0 Journal Article %A Baboolal, Dharmanand %T Conditions under which the least compactification of a regular continuous frame is perfect %J Czechoslovak Mathematical Journal %D 2012 %P 505-515 %V 62 %N 2 %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0025-6/ %R 10.1007/s10587-012-0025-6 %G en %F 10_1007_s10587_012_0025_6
Baboolal, Dharmanand. Conditions under which the least compactification of a regular continuous frame is perfect. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 505-515. doi: 10.1007/s10587-012-0025-6
[1] Aarts, J. M., Boas, P. Van Emde: Continua as remainders in compact extensions. Nieuw Arch. Wisk., III. Ser. 15 (1967), 34-37. | MR
[2] Baboolal, D.: Perfect compactifications of frames. Czech. Math. J. 61(136) (2011), 845-861. | DOI | MR
[3] Banaschewski, B.: Compactification of frames. Math. Nachr. 149 (1990), 105-115. | DOI | MR | Zbl
[4] Johnstone, P. T.: Stone Spaces. Cambridge University Press Cambridge (1982). | MR | Zbl
[5] Jung, C. F. K.: Locally compact spaces whose Alexandroff one-point compactifications are perfect. Colloq. Math. 27 (1973), 247-249. | DOI | MR | Zbl
[6] Sklyarenko, E. G.: Some questions in the theory of bicompactifications. Am. Math. Soc. Transl., II. Ser. 58 (1966), 216-244. | DOI
Cité par Sources :