Spectral characterization of multicone graphs
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 117-126
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.
A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781–790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.
DOI : 10.1007/s10587-012-0021-x
Classification : 05C50
Keywords: adjacency matrix; cospectral graph; spectral characteriztion; multicone graph
@article{10_1007_s10587_012_0021_x,
     author = {Wang, Jianfeng and Zhao, Haixing and Huang, Qiongxiang},
     title = {Spectral characterization of multicone graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {117--126},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0021-x},
     mrnumber = {2899739},
     zbl = {1249.05256},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0021-x/}
}
TY  - JOUR
AU  - Wang, Jianfeng
AU  - Zhao, Haixing
AU  - Huang, Qiongxiang
TI  - Spectral characterization of multicone graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 117
EP  - 126
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0021-x/
DO  - 10.1007/s10587-012-0021-x
LA  - en
ID  - 10_1007_s10587_012_0021_x
ER  - 
%0 Journal Article
%A Wang, Jianfeng
%A Zhao, Haixing
%A Huang, Qiongxiang
%T Spectral characterization of multicone graphs
%J Czechoslovak Mathematical Journal
%D 2012
%P 117-126
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0021-x/
%R 10.1007/s10587-012-0021-x
%G en
%F 10_1007_s10587_012_0021_x
Wang, Jianfeng; Zhao, Haixing; Huang, Qiongxiang. Spectral characterization of multicone graphs. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 117-126. doi: 10.1007/s10587-012-0021-x

[1] Cvetković, D ., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications. 3rd revised a. enl. ed. J. A. Barth Verlag Leipzig (1995). | MR

[2] Cvetković, D., Doob, M., Simić, S.: Generalized line graphs. J. Graph Theory 5 (1981), 385-399. | DOI | MR | Zbl

[3] Dam, E. R. van, Haemers, W. H.: Which graphs are determined by their spectrum?. Linear Algebra Appl. 373 (2003), 241-272. | MR

[4] Dam, E. R. van, Haemers, W. H.: Developments on spectral characterizations of graphs. Discrete Math. 309 (2009), 576-586. | DOI | MR

[5] Godsil, C. D., McKay, B. D.: Constructing cospectral graphs. Aequationes Math. 25 (1982), 257-268. | DOI | MR | Zbl

[6] Erdős, P., Rényi, A., Sós, V. T.: On a problem of graph theory. Stud. Sci. Math. Hung. 1 (1966), 215-235. | MR

[7] Günthard, Hs. H., Primas, H.: Zusammenhang von Graphtheorie und Mo-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39 (1956), 1645-1653. | DOI

[8] Haemers, W. H., Spence, E.: Enumeration of cospectral graphs. Eur. J. Comb. 25 (2004), 199-211. | DOI | MR | Zbl

[9] Harary, F., King, C., Mowshowitz, A., Read, R.: Cospectral graphs and digraphs. Bull. Lond. Math. Soc. 3 (1971), 321-328. | DOI | MR | Zbl

[10] Hong, Y., Shu, J.-L., Fang, K.: A sharp upper bound of the spectral radius of graphs. J. Comb. Theory, Ser. B 81 (2001), 177-183. | DOI | MR | Zbl

[11] Johnson, C. R., Newman, M.: A note on cospectral graphs. J. Comb. Theory, Ser. B 28 (1980), 96-103. | DOI | MR | Zbl

[12] Nikiforov, V.: Some inequalities for the largest eigenvalue of a graph. Comb. Probab. Comput. 11 (2002), 179-189. | DOI | MR | Zbl

[13] Zhou, B., Cho, H. H.: Remarks on spectral radius and Laplacian eigenvalues of a graph. Czech. Math. J. 55 (130) (2005), 781-790. | DOI | MR | Zbl

[14] Wang, J. F., Belardo, F., Huang, Q. X., Borovićanin, B.: On the two largest Q-eigenvalues of graphs. Discrete Math. 310 (2010), 2858-2866. | DOI | MR | Zbl

[15] Wilf, H. S.: The friendship theorem. Combinatorial Mathematics and Its Applications. Proc. Conf. Math. Inst., Oxford D. J. A. Welsh Academic Press New York-Lodon (1971), 307-309. | MR | Zbl

Cité par Sources :