On the continuity of minimizers for quasilinear functionals
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 111-116
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish a continuity result for local minimizers of some quasilinear functionals that satisfy degenerate elliptic bounds. The non-negative function which measures the degree of degeneracy is assumed to be exponentially integrable. The minimizers are shown to have a modulus of continuity controlled by $\log \log (1/|x|)^{-1}$. Our proof adapts ideas developed for solutions of degenerate elliptic equations by J. Onninen, X. Zhong: Continuity of solutions of linear, degenerate elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 103–116.
In this paper we establish a continuity result for local minimizers of some quasilinear functionals that satisfy degenerate elliptic bounds. The non-negative function which measures the degree of degeneracy is assumed to be exponentially integrable. The minimizers are shown to have a modulus of continuity controlled by $\log \log (1/|x|)^{-1}$. Our proof adapts ideas developed for solutions of degenerate elliptic equations by J. Onninen, X. Zhong: Continuity of solutions of linear, degenerate elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 103–116.
DOI : 10.1007/s10587-012-0020-y
Classification : 49J10, 49N60
Keywords: regularity; quasilinear functionals; calculus of variations
@article{10_1007_s10587_012_0020_y,
     author = {Cruz-Uribe, David and Di Gironimo, Patrizia and D'Onofrio, Luigi},
     title = {On the continuity of minimizers for quasilinear functionals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {111--116},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0020-y},
     mrnumber = {2899738},
     zbl = {1249.49052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0020-y/}
}
TY  - JOUR
AU  - Cruz-Uribe, David
AU  - Di Gironimo, Patrizia
AU  - D'Onofrio, Luigi
TI  - On the continuity of minimizers for quasilinear functionals
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 111
EP  - 116
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0020-y/
DO  - 10.1007/s10587-012-0020-y
LA  - en
ID  - 10_1007_s10587_012_0020_y
ER  - 
%0 Journal Article
%A Cruz-Uribe, David
%A Di Gironimo, Patrizia
%A D'Onofrio, Luigi
%T On the continuity of minimizers for quasilinear functionals
%J Czechoslovak Mathematical Journal
%D 2012
%P 111-116
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0020-y/
%R 10.1007/s10587-012-0020-y
%G en
%F 10_1007_s10587_012_0020_y
Cruz-Uribe, David; Di Gironimo, Patrizia; D'Onofrio, Luigi. On the continuity of minimizers for quasilinear functionals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 111-116. doi: 10.1007/s10587-012-0020-y

[1] Fusco, N., Hutchinson, J. E.: Partial regularity and everywhere continuity for a model problem from nonlinear elasticity. J. Aust. Math. Soc., Ser. A 57 (1994), 158-169. | DOI | MR | Zbl

[2] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Reprint of the 1998 ed. Classics in Mathematics. Springer, Berlin (2001). | MR | Zbl

[3] Manfredi, J. J.: Weakly monotone functions. J. Geom. Anal. 4 (1994), 393-402. | DOI | MR | Zbl

[4] Morrey, C. B.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. | DOI | MR | Zbl

[5] Morrey, C. B.: Multiple integral problems in the calculus of variations and related topics. Univ. California Publ. Math., n. Ser. 1 (1943), 1-130. | MR | Zbl

[6] Onninen, J., Zhong, X.: Continuity of solutions of linear, degenerate elliptic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6 (2007), 103-116. | MR | Zbl

Cité par Sources :