Some results on the cofiniteness of local cohomology modules
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 105-110
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $R$ be a commutative Noetherian ring, $\mathfrak {a}$ an ideal of $R$, $M$ an $R$-module and $t$ a non-negative integer. In this paper we show that the class of minimax modules includes the class of $\mathcal {AF}$ modules. The main result is that if the $R$-module ${\rm Ext}^t_R(R/\mathfrak {a},M)$ is finite (finitely generated), $H^i_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite for all $i
Let $R$ be a commutative Noetherian ring, $\mathfrak {a}$ an ideal of $R$, $M$ an $R$-module and $t$ a non-negative integer. In this paper we show that the class of minimax modules includes the class of $\mathcal {AF}$ modules. The main result is that if the $R$-module ${\rm Ext}^t_R(R/\mathfrak {a},M)$ is finite (finitely generated), $H^i_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite for all $i$ and $H^t_\mathfrak {a}(M)$ is minimax then $H^t_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite. As a consequence we show that if $M$ and $N$ are finite $R$-modules and $H^i_\mathfrak {a}(N)$ is minimax for all $i$ then the set of associated prime ideals of the generalized local cohomology module $H^t_\mathfrak {a}(M,N)$ is finite.
DOI : 10.1007/s10587-012-0019-4
Classification : 13D45, 13E05, 14B15
Keywords: local cohomology; cofinite modules; mimimax modules; AF modules; associated primes
@article{10_1007_s10587_012_0019_4,
     author = {Laleh, Sohrab Sohrabi and Sadeghi, Mir Yousef and Mostaghim, Mahdi Hanifi},
     title = {Some results on the cofiniteness of local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--110},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0019-4},
     mrnumber = {2899737},
     zbl = {1249.13012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0019-4/}
}
TY  - JOUR
AU  - Laleh, Sohrab Sohrabi
AU  - Sadeghi, Mir Yousef
AU  - Mostaghim, Mahdi Hanifi
TI  - Some results on the cofiniteness of local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 105
EP  - 110
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0019-4/
DO  - 10.1007/s10587-012-0019-4
LA  - en
ID  - 10_1007_s10587_012_0019_4
ER  - 
%0 Journal Article
%A Laleh, Sohrab Sohrabi
%A Sadeghi, Mir Yousef
%A Mostaghim, Mahdi Hanifi
%T Some results on the cofiniteness of local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2012
%P 105-110
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0019-4/
%R 10.1007/s10587-012-0019-4
%G en
%F 10_1007_s10587_012_0019_4
Laleh, Sohrab Sohrabi; Sadeghi, Mir Yousef; Mostaghim, Mahdi Hanifi. Some results on the cofiniteness of local cohomology modules. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 105-110. doi: 10.1007/s10587-012-0019-4

[1] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules. Proc. Am. Math. Soc. 136 2359-2363 (2008). | DOI | MR | Zbl

[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge (2008). | MR | Zbl

[3] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 179-184 (1984). | DOI | MR | Zbl

[4] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 145-164 (1970). | DOI | MR | Zbl

[5] Herzog, J.: Komplexe Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift Universität Regensburg, Regensburg (1970), German.

[6] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 421-429 (1991). | DOI | MR | Zbl

[7] Mafi, A.: Some results on local cohomology modules. Arch. Math. 87 211-216 (2006). | DOI | MR | Zbl

[8] Mafi, A.: On the associated primes of generalized local cohomology modules. Commun. Algebra. 34 2489-2494 (2006). | DOI | MR | Zbl

[9] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 649-668 (2005). | DOI | MR | Zbl

[10] Melkersson, L.: Problems and Results on Cofiniteness: A Survey. IPM Proceedings Series No. II, IPM (2004).

[11] Vasconcelos, W. V.: Divisor Theory in Module Categories, North-Holland Mathematics Studies. 14. Notas de Matematica, North-Holland Publishing Company, Amsterdam (1974). | MR

[12] Yassemi, S.: Cofinite modules. Commun. Algebra 29 2333-2340 (2001). | DOI | MR | Zbl

[13] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. German Math. Nachr. 64 239-252 (1974). | DOI | MR | Zbl

[14] Zöschinger, H.: Minimax-moduln. German J. Algebra 102 1-32 (1986). | DOI | MR | Zbl

[15] Zöschinger, H.: Über die Maximalbedingung für radikalvolle Untermoduln. German Hokkaido Math. J. 17 101-116 (1988). | DOI | MR | Zbl

Cité par Sources :