A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
DOI :
10.1007/s10587-012-0016-7
Classification :
11A07, 11B65
Keywords: congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
Keywords: congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
@article{10_1007_s10587_012_0016_7,
author = {Me\v{s}trovi\'c, Romeo},
title = {A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$},
journal = {Czechoslovak Mathematical Journal},
pages = {59--65},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2012},
doi = {10.1007/s10587-012-0016-7},
mrnumber = {2899734},
zbl = {1249.11031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/}
}
TY - JOUR
AU - Meštrović, Romeo
TI - A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 59
EP - 65
VL - 62
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
DO - 10.1007/s10587-012-0016-7
LA - en
ID - 10_1007_s10587_012_0016_7
ER -
%0 Journal Article
%A Meštrović, Romeo
%T A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 59-65
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
%R 10.1007/s10587-012-0016-7
%G en
%F 10_1007_s10587_012_0016_7
Meštrović, Romeo. A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65. doi: 10.1007/s10587-012-0016-7
Cité par Sources :