Keywords: congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
@article{10_1007_s10587_012_0016_7,
author = {Me\v{s}trovi\'c, Romeo},
title = {A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$},
journal = {Czechoslovak Mathematical Journal},
pages = {59--65},
year = {2012},
volume = {62},
number = {1},
doi = {10.1007/s10587-012-0016-7},
mrnumber = {2899734},
zbl = {1249.11031},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/}
}
TY - JOUR
AU - Meštrović, Romeo
TI - A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
JO - Czechoslovak Mathematical Journal
PY - 2012
SP - 59
EP - 65
VL - 62
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
DO - 10.1007/s10587-012-0016-7
LA - en
ID - 10_1007_s10587_012_0016_7
ER -
%0 Journal Article
%A Meštrović, Romeo
%T A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 59-65
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
%R 10.1007/s10587-012-0016-7
%G en
%F 10_1007_s10587_012_0016_7
Meštrović, Romeo. A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65. doi: 10.1007/s10587-012-0016-7
[1] Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E.: On the divisibility of the difference between two binomial coefficients. 11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952). | MR
[2] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. 32 (1900), 271-288.
[3] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al. | MR | Zbl
[4] Kazandzidis, G. S.: Congruences on the binomial coefficients. Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12. | MR | Zbl
[5] Lucas, E.: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. S. M. F. 6 (1878), 49-54 French. | MR
[6] McIntosh, R. J.: On the converse of Wolstenholme's Theorem. Acta Arith. 71 (1995), 381-389. | DOI | MR | Zbl
[7] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes. Math. Comput. 76 (2007), 2087-2094. | DOI | MR | Zbl
[8] Meštrović, R.: A note on the congruence ${nd\choose md}\equiv{n\choose m}\pmod{q}$. Am. Math. Mon. 116 (2009), 75-77. | MR
[9] Sun, Z.-W., Davis, D. M.: Combinatorial congruences modulo prime powers. Trans. Am. Math. Soc. 359 (2007), 5525-5553. | DOI | MR | Zbl
[10] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem. J. Number Theory 123 (2007), 18-26. | DOI | MR
Cité par Sources :