A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
In the paper we discuss the following type congruences: $$ \biggl ({np^k\atop mp^k}\biggr ) \equiv \left (m \atop n\right ) \pmod {p^r}, $$ where $p$ is a prime, $n$, $m$, $k$ and $r$ are various positive integers with $n\ge m\ge 1$, $k\ge 1$ and $r\ge 1$. Given positive integers $k$ and $r$, denote by $W(k,r)$ the set of all primes $p$ such that the above congruence holds for every pair of integers $n\ge m\ge 1$. Using Ljunggren's and Jacobsthal's type congruences, we establish several characterizations of sets $W(k,r)$ and inclusion relations between them for various values $k$ and $r$. In particular, we prove that $W(k+i,r)=W(k-1,r)$ for all $k\ge 2$, $i\ge 0$ and $3\le r\le 3k$, and $W(k,r)=W(1,r)$ for all $3\le r\le 6$ and $k\ge 2$. We also noticed that some of these properties may be used for computational purposes related to congruences given above.
DOI : 10.1007/s10587-012-0016-7
Classification : 11A07, 11B65
Keywords: congruence; prime powers; Lucas' theorem; Wolstenholme prime; set $W(k, r)$
@article{10_1007_s10587_012_0016_7,
     author = {Me\v{s}trovi\'c, Romeo},
     title = {A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {59--65},
     year = {2012},
     volume = {62},
     number = {1},
     doi = {10.1007/s10587-012-0016-7},
     mrnumber = {2899734},
     zbl = {1249.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/}
}
TY  - JOUR
AU  - Meštrović, Romeo
TI  - A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
JO  - Czechoslovak Mathematical Journal
PY  - 2012
SP  - 59
EP  - 65
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
DO  - 10.1007/s10587-012-0016-7
LA  - en
ID  - 10_1007_s10587_012_0016_7
ER  - 
%0 Journal Article
%A Meštrović, Romeo
%T A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$
%J Czechoslovak Mathematical Journal
%D 2012
%P 59-65
%V 62
%N 1
%U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0016-7/
%R 10.1007/s10587-012-0016-7
%G en
%F 10_1007_s10587_012_0016_7
Meštrović, Romeo. A note on the congruence ${np^k\choose mp^k} \equiv {n\choose m} \pmod {p^r}$. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 1, pp. 59-65. doi: 10.1007/s10587-012-0016-7

[1] Brun, V., Stubban, J. O., Fjelstad, J. E., Lyche, R. Tambs, Aubert, K. E., Ljunggren, W., Jacobsthal, E.: On the divisibility of the difference between two binomial coefficients. 11. Skand. Mat.-Kongr., Trondheim 1949 42-54 (1952). | MR

[2] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression. Quart. J. 32 (1900), 271-288.

[3] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics. Proceedings of the workshop, Simon Fraser University, Burnaby, Canada, December 12-14, 1995. Providence, RI: American Mathematical Society. CMS Conf. Proc. 20 253-276 (1997), J. Borwein et al. | MR | Zbl

[4] Kazandzidis, G. S.: Congruences on the binomial coefficients. Bull. Soc. Math. Grèce, N. Ser. 9 (1968), 1-12. | MR | Zbl

[5] Lucas, E.: Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull. S. M. F. 6 (1878), 49-54 French. | MR

[6] McIntosh, R. J.: On the converse of Wolstenholme's Theorem. Acta Arith. 71 (1995), 381-389. | DOI | MR | Zbl

[7] McIntosh, R. J., Roettger, E. L.: A search for Fibonacci-Wieferich and Wolstenholme primes. Math. Comput. 76 (2007), 2087-2094. | DOI | MR | Zbl

[8] Meštrović, R.: A note on the congruence ${nd\choose md}\equiv{n\choose m}\pmod{q}$. Am. Math. Mon. 116 (2009), 75-77. | MR

[9] Sun, Z.-W., Davis, D. M.: Combinatorial congruences modulo prime powers. Trans. Am. Math. Soc. 359 (2007), 5525-5553. | DOI | MR | Zbl

[10] Zhao, J.: Bernoulli numbers, Wolstenholme's theorem, and $p^5$ variations of Lucas' theorem. J. Number Theory 123 (2007), 18-26. | DOI | MR

Cité par Sources :